Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)
\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)
\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)
\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)
2)
\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)
\(=\sqrt{12,1.36.10}\)
= \(\sqrt{121.36}\)
\(=\sqrt{4356}\)
\(=66\)
3)
\(\sqrt{5a}.\sqrt{45a}-3a\)
\(=\sqrt{5.45a^2}-3a\)
\(=\sqrt{225a^2}-3a\)
\(=\sqrt{\left(15a\right)^2}-3a\)
\(=-15a-3a\) ( vì \(a\le0\))
\(=-18a\)
5)
\(\sqrt{0,36a^2}\)
\(=\sqrt{\left(0,6a\right)^2}\)
\(=-0,6a\) ( vì \(a< 0\) )
Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.
Chúc bạn học tốt!
1)
\(\sqrt{3a^3}.\sqrt{12}\)
\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)
\(=\sqrt{3.12}.\sqrt{a^3}\)
\(=6\sqrt{a^3}\)
4)
\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)
\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)
\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)
\(=54a^3-6\sqrt{a^2}\)
\(=54a^3-6a^2\) ( vì a<0)
6)
\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)
\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)
\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)
\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)
Mà\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)
\(=a^2\left(a-3\right)\)
\(=a^3-3a^2\)
Còn lại bạn làm tương tự nha, trể quá rùi :)))))
a)\(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=\sqrt{\left(2a-6\right)^2}=2a-6\)
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=\sqrt{\left[3\left(b-2\right)\right]^2}=3b-6\)
c) bạn xem lại đề
d)
\(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{\left(15a\right)^2}-3a=15a-3a=12a\)
e) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{\sqrt{16}}{\sqrt{x^2}}=\dfrac{4}{x}\)
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)
\(=3\sqrt{3}\cdot4\sqrt{3}\cdot\left|1-a\right|\)
\(=36\cdot\left(a-1\right)=36a-36\)
b) \(\dfrac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot\left(a-b\right)\cdot a^2\)
\(=a^2\)
a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)
\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)
\(=36\sqrt{1-a^2}\)
c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)
\(=15a-3a=12a\)
b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)
\(=a^2\)
d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
\(=a^2-6a+9-\sqrt{36a^2}\)
\(=a^2-6a+9-\left|6a\right|\)
\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)