1/1+2+1/1+2+3+1/1+2+3+4+.......+1/1+2+3+4+....2021 Help me please
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))
S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)
Vì em lớp 6 nên phải làm thêm bước này nữa:
Ta có
n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)
Áp dụng công thức vừa chứng minh trên vào tổng S ta có:
S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)
S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)
S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)
S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)
S = \(\dfrac{51}{100}\)
\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right).\)
\(P=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{98}{99}\)
\(P=\frac{1.2.3.4...98}{2.3.4....99}\)
Tới bước này cậu rút hết thì ta sẽ còn
\(P=\frac{1}{99}\)
Vậy \(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right)=\frac{1}{99}\)
\(a\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\left(\frac{1}{2}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\frac{2}{5}.y=\frac{1}{3}\)
\(y=\frac{1}{3}:\frac{2}{5}\)
\(y=\frac{5}{6}\)
\(b,\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}:\frac{10}{11}\)
\(y=\frac{22}{30}\)
tính:
a.(-2/3+3/7) : 4/5 + (-1/3+4/7) : 4/5
b. 5/9 : (1/11-5/22) + 5/9 : (1/15 - 2/3)
Help Me, Please !
a.(-2/3+3/7) : 4/5 + (-1/3+4/7) : 4/5
= [(-2/3 + 3/7) + (-1/3 + 4/7)] : 4/5
= [(-2/3 + (-1/3) + (3/7 + 4/7)] : 4/5
= [-1 + 1] : 4/5
= 0 : 4/5
= 0
a) \(\left(\frac{-2}{3}+\frac{3}{7}\right).\frac{5}{4}+\left(\frac{-1}{3}+\frac{4}{7}\right).\frac{5}{4}\)
=\(\left(\frac{-2}{3}+\frac{-1}{3}+\frac{3}{7}+\frac{4}{7}\right).\frac{5}{4}\)
= \(0.\frac{5}{4}=0\)
b) \(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)\)
=\(\frac{5}{9}:\frac{-81}{110}=\frac{-550}{729}\)
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
Vậy xét là \(\frac{1}{2}+1\)nhé.
a,\(\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{1000}{999}\)
=3x4x5x...x1000/2x3x4x...x999
=1000/2=500
b, c tương tự câu a
)(1/2+1)x(1/3+1)x(1/4+1)x...x(1/999+1)
b)(1/2-1)x(1/3-1)x(1/4-1)x...x(1/1000-1)
c)3/22 x 8/32 x 15/42 x .... x 99/102
mình ko biết làm chép lại de thui
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2021}\)
\(A=\frac{1}{\frac{2\times3}{2}}+\frac{1}{\frac{3\times4}{2}}+\frac{1}{\frac{4\times5}{2}}+...+\frac{1}{\frac{2021\times2022}{2}}\)
\(A=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2021\times2022}\right)\)
\(A=2\times\left(\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{2022-2021}{2021\times2022}\right)\)
\(A=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2022}\right)\)
\(A=2\times\left(\frac{1}{2}-\frac{1}{2022}\right)\)
\(A=\frac{1010}{1011}\)