1/2^2+1/3^2+1/4^2+...+1/m^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
\(M=54-\frac{1}{2}.\left(1+2\right)-\frac{1}{3}.\left(1+2+3\right)-....-\frac{1}{12}.\left(1+2+...12\right)\)
\(M=54-\left[\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{12}.\left(1+2+...+12\right)\right]\)
\(M=54-\left(\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+....+\frac{1}{12}\cdot\frac{12.13}{2}\right)\)
\(M=54-\left(\frac{3}{2}+\frac{4}{2}+...+\frac{13}{2}\right)=54-44=10\)
Vậy M=10
\(M=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\)
\(M=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}\)
\(M=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}\)
\(M=2\left(\begin{cases}1\\2\end{cases}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(M=2.\frac{1}{3}\)
\(M=\frac{2}{3}\)
Nếu đúng thì tk cho mình nhé <33
1/22+1/32+...+1/m2<1/1.2+1/2.3+....+1/(m-1).m=1-1/m mà 1/m>0 suy ra 1/22+1/32+...+1/m2<1
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(...\)
\(\frac{1}{m^2}< \frac{1}{\left(m-1\right)m}\)
\(\Leftrightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{m^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{\left(m-1\right)m}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{m-1}-\frac{1}{m}\)
\(\Leftrightarrow A< 1-\frac{1}{m}< 1\)
Vậy ...