Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`
+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)
Ta có \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\)
= \(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\dfrac{1}{3}-\dfrac{1}{60}=\dfrac{19}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Vậy M < \(\dfrac{2}{3}\)
a) 3 3/4 . x = 1 1/2
<=> 15/4 . x = 3/2
<=> x = 3/4 . 4/15
<=> x = 1/5
Vậy x = 1/5
b) 1 1/4 x + 1 1/2 = 1 1/4
<=> 5/4 . x + 3/2 = 5/4
<=> 5/4 . x = 5/4 - 3/2
<=> 5/4 . x = -1/4
<=> x = -1/4 . 4/5
<=> x = -1/5
Vậy x = -1/5
c) ( 3 1/3 - 1 1/2 x ) : 5/6 = 1 1/2
<=> ( 10/3 - 3/2 x ) : 5/6 = 3/2
<=> 10/3 - 3/2 x = 3/2 . 5/6
<=> 10/3 - 3/2 x = 5/4
<=> 3/2 . x = 10/3 - 5/4
<=> 3/2 . x = 25/12
<=> x = 25/12 . 2/3
<=> x = 25/18
Vậy x = 25/18
d) ( 3/7 x - 1 ) : 4 = -1/28
<=> 3/7 . x - 1 = -1/28 . 1/4
<=> 3/7 . x - 1 = -1/112
<=> 3/7 . x = -1/112 + 1
<=> 3/7 . x = 111/112
<=> x = 111/112 . 7/3
<=> x = 37/16
Vậy x = 37/16
e) | x - 3/4 | = 1
<=> x - 3/4 = 1
hoặc x - 3/4 = -1
<=> x = 1 + 3/4
hoặc x = -1 + 3/4
<=> x = 7/4
hoặc x = -1/4
Vậy x = 7/4 ; x = -1/4
f) | 2/3 . x + 1/3 | = 5/6
<=> 2/3 . x + 1/3 = 5/6
hoặc 2/3 . x + 1/3 = -5/6
<=> 2/3 . x = 5/6 - 1/3
hoặc 2/3 . x = -5/6 - 1/3
<=> 2/3 . x = 1/2
hoặc 2/3 . x = -7/6
<=> x = 1/2 . 3/2
hoặc x = -7/6 . 3/2
<=> x = 3/4
hoặc x = -7/4
Vậy x = 3/4 ; x = -7/4
1/22+1/32+...+1/m2<1/1.2+1/2.3+....+1/(m-1).m=1-1/m mà 1/m>0 suy ra 1/22+1/32+...+1/m2<1
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(...\)
\(\frac{1}{m^2}< \frac{1}{\left(m-1\right)m}\)
\(\Leftrightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{m^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{\left(m-1\right)m}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{m-1}-\frac{1}{m}\)
\(\Leftrightarrow A< 1-\frac{1}{m}< 1\)
Vậy ...