K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

a) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow AC\bot BC\)

mà \(ON\bot BC\) (N là điểm chính giữa cung BC)

\(\Rightarrow CK\parallel EN\) mà \(NK\bot KC\Rightarrow NK\bot EN\)

\(\Rightarrow\angle KCE=\angle KNE=\angle CEN=90\Rightarrow ECKN\) là hình chữ nhật

\(\angle KNO=90\Rightarrow KN\) là tiếp tuyến

b) ECKN là hình chữ nhật \(\Rightarrow ECKN\) cũng nội tiếp

\(\Rightarrow\angle KEN=\angle KCN=\angle CNE\) \((KC\parallel NE)\)

Vì \(AC\parallel ND\) mà ACND nội tiếp \(\Rightarrow ACND\) là hình thang cân

\(\Rightarrow\angle CNE=\angle ADN\Rightarrow\angle KEN=\angle ADN\) \(\Rightarrow KE \parallel AD\)

mà \(KA\parallel ED\) \(\Rightarrow KEDA\) là hình bình hành

c) Vì \(\left\{{}\begin{matrix}MO\bot AC\\NK\bot AC\end{matrix}\right.\) \(\Rightarrow MO\parallel NK\) \(\Rightarrow\dfrac{NI}{IM}=\dfrac{NK}{MO}\Rightarrow\dfrac{NI}{NK}=\dfrac{MI}{MO}=\dfrac{MI}{R}\)

Vì M,N lần lượt là điểm chính giữa cung AC,BC \(\Rightarrow\angle MON=90\)

\(\Rightarrow MN=\sqrt{OM^2+ON^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)

Ta có: \(\dfrac{NI}{NK}+\dfrac{NI}{NO}=\dfrac{MI}{R}+\dfrac{NI}{R}=\dfrac{MI+NI}{R}=\dfrac{MN}{R}=\dfrac{\sqrt{2}R}{R}=\sqrt{2}\)

\(\Rightarrow NI\left(\dfrac{1}{NK}+\dfrac{1}{NO}\right)=\sqrt{2}\Rightarrow\dfrac{\sqrt{2}}{NI}=\dfrac{1}{NK}+\dfrac{1}{NO}\)

 

23 tháng 6 2021

thank :3333

OB=OC

MB=MC

=>OM là trung trực của BC

=>OM vuông góc BC tại I

góc CHO+góc CIO=180 độ

=>CHOI nội tiếp

AC=AD

OC=OD

=>AO là trung trực của CD

=>OA vuông góc CD tại I

góc AMB=1/2*180=90 độ

góc KMB+góc KIB=180 độ

=>KMBI nội tiếp

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).

a: C là điểm chính giữa của cung AB

=>OC vuông góc AB

góc OHE=góc OME=90 độ

=>OHME nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

=>góc AMH+góc AOH=180 độ

=>OHMA nội tiếp

=>O,H,M,E,A cùng thuộc 1 đường tròn

=>góc EAO=90 độ

OHEA có 3 góc vuông

=>OHEA là hcn

=>EH=OA=R

29 tháng 5 2021

a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)

b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)

\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)

c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)

mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)

mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)

Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)

\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp