Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Di*k_{m}*C là điểm C nhó vì do bị lỗi phông chữ mong mng thông cảm vs ạ🥺
a: góc CND=1/2*180=90 độ
góc DOM+góc DNM=180 độ
=>OMND nội tiếp
b: Xét ΔANC và ΔMNB cóa
góc ANC=góc MNB
góc NAC=góc NMB
=>ΔANC đồng dạng vớii ΔMNB
=>AN/MN=AC/MB
=>AN*MB=MN*AC
1) Vì AB là đường kính \(\Rightarrow\angle AMB=90\)
\(\Rightarrow\angle EHB+\angle EMB=90+90=180\Rightarrow EMBH\); nội tiếp
b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\)
\(\Rightarrow\Delta ACB\) vuông tại C có \(CH\bot AB\Rightarrow AC^2=AH.AB\) (hệ thức lượng)
Xét \(\Delta AEH\) và \(\Delta ABM:\) Ta có: \(\left\{{}\begin{matrix}\angle AHE=\angle AMB=90\\\angle MABchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEH\sim\Delta ABM\left(g-g\right)\Rightarrow\dfrac{AE}{AB}=\dfrac{AH}{AM}\Rightarrow AE.AM=AH.AB\)
\(\Rightarrow AE.AM=AC^2\Rightarrow\dfrac{AE}{AC}=\dfrac{AC}{AM}\)
Xét \(\Delta ACE\) và \(\Delta AMC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AC}{AM}\\\angle MACchung\end{matrix}\right.\)
\(\Rightarrow\Delta ACE\sim\Delta AMC\left(c-g-c\right)\Rightarrow\dfrac{AE}{AC}=\dfrac{CE}{CM}\Rightarrow AE.CM=AC.EC\)
1) Dễ thấy \(\widehat{HCB}=\widehat{ACB}=90^o\)
tứ giác CBKH có \(\widehat{HKB}=\widehat{HCB}=90^o\)nên là tứ giác nội tiếp
\(\Rightarrow\widehat{HCK}=\widehat{HBK}\)( 1 )
Mà \(\widehat{ACM}=\widehat{ABM}=\frac{1}{2}sđ\widebat{AM}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{ACM}=\widehat{ACK}\)
2) Xét \(\Delta AMC\)và \(\Delta BEC\)có :
AM = BE ; AC = BC ; \(\widehat{MAC}=\widehat{CBE}=\frac{1}{2}sđ\widebat{MC}\)
\(\Rightarrow\Delta AMC=\Delta BEC\)( c.g.c )
\(\Rightarrow MC=EC\)
Ta có : \(\widehat{CMB}=\frac{1}{2}sđ\widebat{BC}=45^o\)
Suy ra \(\Delta ECM\)vuông cân tại C
3) Ta có : \(\frac{AP.MB}{AM}=R=OB\Rightarrow\frac{AP}{MA}=\frac{OB}{MB}\)
Xét \(\Delta APM\)và \(\Delta OBM\), ta có :
\(\frac{AP}{MA}=\frac{OB}{MB}\); \(\widehat{PAM}=\widehat{MBO}=\frac{1}{2}sđ\widebat{AM}\)
\(\Rightarrow\Delta APM\approx\Delta BOM\left(c.g.c\right)\)
\(\Rightarrow\Delta APM\)cân tại P ( vì \(\Delta BOM\)cân tại O )
\(\Rightarrow PA=PM\)
Gọi giao điểm của BM và ( d ) là F ; giao điểm của BP với HK là I
Xét tam giác vuông AMF có PA = PM nên PA = PM = PF
Theo định lí Ta-let, ta có :
\(\frac{HI}{FP}=\frac{BI}{BP}=\frac{KI}{AP}\Rightarrow HI=KI\)
vì vậy PB đi qua trung điểm của HK
AC=AD
OC=OD
=>AO là trung trực của CD
=>OA vuông góc CD tại I
góc AMB=1/2*180=90 độ
góc KMB+góc KIB=180 độ
=>KMBI nội tiếp