1)Viết biểu thức sau đưới dạng tích của các đa thức
a)-x6/125- y3/64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=8\left(x^3-125\right)=8\left(x-5\right)\left(x^2+5x+25\right)\\ b,=\left(0,1+4x\right)\left(0,01-0,4x+16x^2\right)\\ c,=\left(x+\dfrac{1}{5}y\right)\left(x^2-\dfrac{1}{5}xy+\dfrac{1}{25}y^2\right)\\ d,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ e,=\left(x-1+3\right)\left[\left(x-1\right)^2-3\left(x-1\right)+9\right]\\ =\left(x+2\right)\left(x^2-2x+1-3x+3+9\right)\\ =\left(x+2\right)\left(x^2-5x+13\right)\\ f,=\left(\dfrac{x^2}{2}-y^2\right)\left(\dfrac{x^4}{4}+\dfrac{x^2y^2}{2}+y^4\right)\)
\(a,=\left(3+x\right)\left(9-3x+x^2\right)\\ b,=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\\ c,=\left(2-3x\right)\left(4+6x+9x^2\right)\\ d,=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
\(Sửa,đề:x^2-10x+25\\ =x^2-2x.5+5^2=\left(x-5\right)^2=\left(x-5\right)\left(x-5\right)\\---\\ b,x^3+125=x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\\ ---\\ 8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
a, Bạn xem lại đề vì không thể tách được.
b, \(x^3+125\\ =x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\)
c, \(8x^3-y^3\\ =\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
BÀi 1 : xem lại đề
bài 2
a) 27 - x^3
= ( 3 -x )( 9 + 3x + x^2)
b) 8x^3 + 0,001
= (2x + 0,1) ( 4x^2 - 0,2x + 0,01)
\(\frac{x^3}{64}-\frac{y^3}{125}=\left(\frac{x}{4}-\frac{y}{5}\right)\left(\frac{x^2}{16}-\frac{xy}{20}+\frac{y^2}{25}\right)\)
a+b=7=>(a+b)2=49
=>a2+2ab+b2=49
Do ab=3
=>2ab=6
=>b2+a2=43
Ta có:a3+b3=(a+b)(a2-ab+b2)
Thay a2+b2=43 ab=3 a+b=7
=> a3+b3=7.(43-3)=7.40=280
a)27-x3=(3-x)(9+3x+x2)
b)8x3+0,001=(2x+0,1)(4x2-0,2x+0,01)
c)x3/64-y3/125=(x/4-y/5)(x2/16+xy/20+y2/25)
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
\(a.9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)
\(b.\left(2x+y\right)^2-1=\left(2x+y-1\right)\left(2x+y+1\right)\)
\(c.\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left[\left(x+y+z\right)+\left(x-y-z\right)\right]\left[\left(x+y+z\right)\right]-\left(x-y-z\right)\\ =2x.\left(2y+2z\right)\)
a) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)
b) \(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y+1\right)\left(2x+y-1\right)\)
c) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left(x+y+z+x-y-z\right)\left(x+y+z-x+y+z\right)\)
\(=2x\left(2y+2z\right)\)
a) \(64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)
b) \(125x^6-27x^9=\left(5x^2-3x^3\right)\left(25x^4+15x^5+9x^6\right)\)
c) \(-\dfrac{x^6}{125}-\dfrac{y^3}{64}=-\left(\dfrac{x^6}{125}+\dfrac{y^3}{64}\right)=-\left(\dfrac{x^2}{5}+\dfrac{y}{4}\right)\left(\dfrac{x^4}{25}-\dfrac{x^2y}{20}+\dfrac{y^2}{16}\right)\)
\(\frac{-x^6}{125}-\frac{y^3}{64}\)
\(=\frac{-\left(x^2\right)^3}{5^3}-\frac{y^3}{4^3}\)
\(=\left(\frac{-x^2}{5}\right)^3-\left(\frac{y}{4}\right)^3\)
\(=\left(\frac{-x^2}{5}-\frac{y}{4}\right)\cdot\left(\frac{x^4}{25}-\frac{x^2y}{20}+\frac{y^2}{16}\right)\)
Tham khảo nhé~
\(-\frac{x^6}{125}-\frac{y^3}{64}\)
\(=-\left(\frac{x^6}{125}+\frac{y^3}{64}\right)\)
\(=-\left(\frac{x^2}{5}+\frac{y}{4}\right)\left(\frac{x^4}{25}-\frac{x^2y}{20}+\frac{y^2}{16}\right)\)