K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

A B C H M

a) Do AM là trung tuyến nên BM = MC

Ta có :  \(HC-HB-2HM\)

\(=HM+MC-HB-HM-HM\)

\(=MC-HB-HM\)

\(=MC-\left(HB+HM\right)\)

\(=MC-MB=0\)

\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)

b) Xét  \(\Delta AHM\)có  \(\tan a=\frac{HM}{AH}\)

Xét  \(\Delta AHC\)có  \(\cot C=\frac{HC}{AH}\)

Xét  \(\Delta AHB\)có  \(\cot B=\frac{HB}{AH}\)

Ta có :  \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)

Mà  \(HC-HB=2HM\)( câu a )

\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)

Vậy ...

17 tháng 8 2018

Bài Làm: 

vẽ AH vuông góc với BC 

\(\Rightarrow\cot B=\frac{BH}{AH}\left(\Delta ABH;\widehat{H}=1v\right)\)

\(\Rightarrow\cot C=\frac{HC}{AH}\left(\Delta HCA;\widehat{H}=1v\right)\)

\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\left(1\right)\)

Gọi G là giao điểm 2 đường trung tuyến BM ; CN

Nếu AG cắt BC tại I thì AI - đường trung tuyến tam giác ABC

Suy ra BI = IC 

suy ra GI - đường trung tuyến tam giác GBC vuông tại G

\(\Rightarrow BC=2GI\left(2\right)\)

\(AH\le AI\le3GI\left(3\right)\)

\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\ge\frac{2AI}{3AI}=\frac{2}{3}\)

Vậy \(\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(AH\equiv AI\)

\(\Rightarrow\Delta ABC\)cân tại A


A B C M N H I G \ \ // //

28 tháng 8 2020

\(Ta\)\(có\)\(:\)

\(tana\)\(=\frac{HM}{AH}\)

\(\Rightarrow2\)\(tana\)\(=\frac{2HM}{AH}\)\(=\frac{CH-BH}{AH}\)\(=\frac{CH}{AH}\)\(-\frac{BH}{AH}\)

\(\Rightarrow cot\)\(C\)\(-\)\(cot\)\(B\)

\(\Rightarrow\)\(tana\)\(=\frac{cotC-cotB}{2}\)

19 tháng 9 2017

Đáp án D

Do tam giác ABC vuông tại A có đường trung tuyến AM ứng với cạnh huyền nên:

13 tháng 8 2016

vẽ hình thử xem mk ko vẽ dc hình

8 tháng 7 2017

Cho hình vẽ

A G N B H D C M

Gọi G là trọng tâm của ABC 

Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả; 

cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)

Lại nhận thấ \(AM\ge AH\)

Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc 

Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)

Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)