Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do AM là trung tuyến nên BM = MC
Ta có : \(HC-HB-2HM\)
\(=HM+MC-HB-HM-HM\)
\(=MC-HB-HM\)
\(=MC-\left(HB+HM\right)\)
\(=MC-MB=0\)
\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)
b) Xét \(\Delta AHM\)có \(\tan a=\frac{HM}{AH}\)
Xét \(\Delta AHC\)có \(\cot C=\frac{HC}{AH}\)
Xét \(\Delta AHB\)có \(\cot B=\frac{HB}{AH}\)
Ta có : \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)
Mà \(HC-HB=2HM\)( câu a )
\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)
Vậy ...
Bài Làm:
vẽ AH vuông góc với BC
\(\Rightarrow\cot B=\frac{BH}{AH}\left(\Delta ABH;\widehat{H}=1v\right)\)
\(\Rightarrow\cot C=\frac{HC}{AH}\left(\Delta HCA;\widehat{H}=1v\right)\)
\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\left(1\right)\)
Gọi G là giao điểm 2 đường trung tuyến BM ; CN
Nếu AG cắt BC tại I thì AI - đường trung tuyến tam giác ABC
Suy ra BI = IC
suy ra GI - đường trung tuyến tam giác GBC vuông tại G
\(\Rightarrow BC=2GI\left(2\right)\)
\(AH\le AI\le3GI\left(3\right)\)
\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\ge\frac{2AI}{3AI}=\frac{2}{3}\)
Vậy \(\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(AH\equiv AI\)
\(\Rightarrow\Delta ABC\)cân tại A
Đáp án D
Do tam giác ABC vuông tại A có đường trung tuyến AM ứng với cạnh huyền nên:
Cho hình vẽ
Gọi G là trọng tâm của ABC
Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả;
cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)
Lại nhận thấ \(AM\ge AH\)
Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc
Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)
Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)