\(\cot B=3\cot C\)th...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

A B C H M

a) Do AM là trung tuyến nên BM = MC

Ta có :  \(HC-HB-2HM\)

\(=HM+MC-HB-HM-HM\)

\(=MC-HB-HM\)

\(=MC-\left(HB+HM\right)\)

\(=MC-MB=0\)

\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)

b) Xét  \(\Delta AHM\)có  \(\tan a=\frac{HM}{AH}\)

Xét  \(\Delta AHC\)có  \(\cot C=\frac{HC}{AH}\)

Xét  \(\Delta AHB\)có  \(\cot B=\frac{HB}{AH}\)

Ta có :  \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)

Mà  \(HC-HB=2HM\)( câu a )

\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)

Vậy ...

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

mình ko hiểu cho lắm bạn à đây là hình học mà 

8 tháng 7 2016

A C B H M

Gọi AH là đường cao của tam giác ABC (H thuộc BC)

Ta có : \(cotB=\frac{BH}{AH};cotC=\frac{CH}{AH}\) . Theo giả thiết : \(cotB=3cotC\Rightarrow BH=3CH\)

Mà BH + CH = BC\(\Rightarrow BC=4CH\Rightarrow CH=\frac{BC}{4}=\frac{2CM}{4}=\frac{CM}{2}\)

Vậy \(CH=\frac{1}{2}CM\); Ta cũng có : \(BH=BM+MH=2CH+MH=3CH\Rightarrow MH=CH\)

Do đó AH là đường trung trực của CM => AC = AM (đpcm)

AM sao có thể bằng AC đc? Đề có vấn đề j ko bn?

8 tháng 7 2017

a/ BN và CN cắt nhau tại I => \(NI=\frac{BI}{2}\) và \(MI=\frac{CI}{2}\)

+ Ta có \(AC=2CN\Rightarrow AC^2=4CN^2\)và \(AB=2BM\Rightarrow AB^2=4BM^2\)

+ Xét tg vuông BIM có \(BM^2=BI^2+MI^2\Rightarrow4BM^2=AB^2=4\left(BI^2+MI^2\right)=4\left(BI^2+\frac{CI^2}{4}\right)\)

+ Xét tg vuông CIN có \(CN^2=CI^2+NI^2\Rightarrow4CN^2=AC^2=4\left(CI^2+NI^2\right)=4\left(CI^2+\frac{BI^2}{4}\right)\)

\(\Rightarrow AB^2+AC^2=4\left[\left(BI^2+CI^2\right)+\frac{BI^2+CI^2}{4}\right]\)

Mà trong tg vuông BIC có \(BC^2=BI^2+CI^2\)

\(\Rightarrow AB^2+AC^2=4\left(BC^2+\frac{BC^2}{4}\right)=5BC^2\)

b/ 

22 tháng 10 2017

a) chỉ khác M,N còn lại y chang

Câu hỏi của diỄm_triNh_2k3 - Toán lớp 9 | Học trực tuyến

b) tam giác vuông AHB: cotB = BH / AH

tam giác vuông AHC: cot C = HC/AH

\(VP=\dfrac{BC}{cotB+cotC}=\dfrac{BC}{\dfrac{BH}{AH}+\dfrac{HC}{AH}}=\dfrac{BC}{\dfrac{BC}{AH}}=AH=VT\) (đẳng thức được chứng minh)

23 tháng 10 2017

VP nghĩa là gì vậy bạn KZ