K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

a) chỉ khác M,N còn lại y chang

Câu hỏi của diỄm_triNh_2k3 - Toán lớp 9 | Học trực tuyến

b) tam giác vuông AHB: cotB = BH / AH

tam giác vuông AHC: cot C = HC/AH

\(VP=\dfrac{BC}{cotB+cotC}=\dfrac{BC}{\dfrac{BH}{AH}+\dfrac{HC}{AH}}=\dfrac{BC}{\dfrac{BC}{AH}}=AH=VT\) (đẳng thức được chứng minh)

23 tháng 10 2017

VP nghĩa là gì vậy bạn KZ

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

mình ko hiểu cho lắm bạn à đây là hình học mà 

2 tháng 8 2018

1)

a) trong tam giac ABC vuong tai A co 

+)BC2=AB2+AC2

suy ra AC=12cm

+)AH.BC=AB.AC

suy ra AH=7,2cm

b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm

suy ra MN=7,2cm

c) goi O la giao diem cu MN va AH 

Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm

suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB 

Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC

suy ra tam giac AKB can tai K

suy ra goc B= goc BAK

Ta co goc B+ goc BAH=90 do 
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)

2 tháng 8 2018

bai 2 sai de ban oi sinx hay cosx chu ko phai sin hay cos

24 tháng 10 2018

a, vì \(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15\)
=> ABC là tam giác vuông (theo định lí Pytago)
b, sin B = 0,6 ; sin C = 0,8 (sin = đối/huyền)
=> \(\dfrac{sinB+sinC}{sinB-sinC}=\dfrac{0,6+0,8}{0,6-0,8}=-7\)
c, AH.BC = AC.AB
=>\(AH=\dfrac{AC.AB}{BC}=\dfrac{9.12}{15}=7,2\)

28 tháng 10 2022

d: Sửa đề: AN*AB=AM*AC
AN*AB=AH^2

AM*AC=AH^2

Do đó: AN*AB=AM*AC

e: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC\cdot\dfrac{AH}{BC}=AH\)

31 tháng 1 2019

b/ Gọi G là giao điểm của AB và DF

Ta có :

  Góc ACQ = góc AHQ ( t/g ACHQ n.t )

  Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )

=> Góc AHQ = góc ADF

Mà 2 góc ở vị trí đồng vị 

Nên \(HQ//DF\)

Mặc khác \(HQ\perp AB\)tại Q

=> \(DF\perp AB\)tại G

Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)

=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)

Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))

Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)

Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)

=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)

(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)

=> \(\overline{M,G,N}\)

Mà G là giao điểm của AB và DF

Nên MN,AB,DF đồng quy tại G

MN là đường thẳng simson nha bạn

7 tháng 7 2020

khong biet

a nha

a: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

=>góc ANM=góc AHM=góc B

Ta có: ΔBAC vuông tại A
mà AI là trung tuyến

nên IA=IC=IB

=>góc IAC=góc ICA

=>góc IAN+góc ANM=90 độ

=>AI vuông góc với MN tại K

Xét ΔAMN vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)

b: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)

=>ĐPCM

\(AB\cdot AC\cdot sinB\cdot cosB\)

\(=AB\cdot AC\cdot\dfrac{AC}{BC}\cdot\dfrac{AB}{BC}=AB^2\cdot\dfrac{AC^2}{BC^2}\)

\(=\dfrac{\left(AH\cdot BC\right)^2}{BC^2}=AH^2\)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AN}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nen \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN và ΔACB có

AM/AC=AN/AB

góc MAN chung

Do đó: ΔAMN đồng dạng với ΔACB

b: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC:\dfrac{BC}{AH}=AH\)