K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2022

a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)

⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)

Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)

⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)

⇒⇒ cung CE = cung MB

mà cung MB=cung AM (do M là điểm chính giữa của cung AB)

⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và

ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân

 

b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB

CH⊥ABCH⊥AB (giả thiết)

⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)

ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)

Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^

⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)

icon

a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)

⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)

Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)

⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)

⇒⇒ cung CE = cung MB

mà cung MB=cung AM (do M là điểm chính giữa của cung AB)

⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và

ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân

 

b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB

CH⊥ABCH⊥AB (giả thiết)

⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)

ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)

Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^

⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)

image 
5 tháng 4 2022

undefined

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

22 tháng 9 2019

A B O M C D E F H G

1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.

Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))

Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM

Vậy thì tứ giác ACEM là hình thang cân (đpcm).

2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB

Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).

3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)

Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG

Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM

Theo mối quan hệ giữa đường kính và dây ta có: 

\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)

Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).

11 tháng 3 2020

lm hộ tớ phần 4 thôi nha mn

Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N  và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

=> Tâm I của đường tròn ngoại tiếp tam giác BMN  nằm trên đường trung trực của đoạn thẳng  BA'.

 

Ai cứu với mình cần bài này siêu gấp 😭😭😭😭😭😭😭

a) Vì D là một điểm nằm trên cung AM nhỏ của (O) nên D∈(O)

Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính của (O)(gt)

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEC có 

\(\widehat{ADE}\) và \(\widehat{ACE}\) là hai góc đối

\(\widehat{ADE}+\widehat{ACE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)