K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2022

a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)

⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)

Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)

⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)

⇒⇒ cung CE = cung MB

mà cung MB=cung AM (do M là điểm chính giữa của cung AB)

⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và

ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân

 

b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB

CH⊥ABCH⊥AB (giả thiết)

⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)

ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)

Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^

⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)

icon

a) ˆAEB=90oAEB^=90o (góc nội tiếp chắn nửa đường tròn) ⇒BE⊥AE⇒BE⊥AE mà CM⊥AECM⊥AE (giả thiết)

⇒BE∥CM⇒ˆCME=ˆMEB⇒BE∥CM⇒CME^=MEB^ (hai góc ở vị trí so le trong)

Mà ˆMCB=ˆMEBMCB^=MEB^ (góc nội tiếp cùng chắn cung MB)

⇒ˆCME=ˆMCB⇒CME^=MCB^ (=ˆMEB)(=MEB^)

⇒⇒ cung CE = cung MB

mà cung MB=cung AM (do M là điểm chính giữa của cung AB)

⇒⇒ cung AM=AM= cung CE⇒AM=CECE⇒AM=CE (1) và

ˆACM=ˆCMEACM^=CME^ (góc nội tiếp cùng chắn 2 cung bằng nhau cung AM=cung CE) mà chúng ở vị trí so le trong nên AC//ME⇒ACEMAC//ME⇒ACEM là hình thang lại có thêm AM=CE (cmt) ⇒ACEM⇒ACEM là hình thang cân

 

b) Do M là điểm chính giữa của cung AB nên MO⊥ABMO⊥AB

CH⊥ABCH⊥AB (giả thiết)

⇒MO//CH⇒ˆHCM=ˆCMO⇒MO//CH⇒HCM^=CMO^ (hai góc ở vị trí so le trong) (2)

ΔOCMΔOCM cân đỉnh O (OM=OC=R) ⇒ˆMCO=ˆCMO⇒MCO^=CMO^ (3)

Từ (2) và (3) suy ra ˆHCM=ˆMCOHCM^=MCO^

⇒CM⇒CM là phân giác của ˆHCOHCO^ (đpcm)

image 
5 tháng 6 2021

a) Vì M là điểm chính giữa cung AB \(\Rightarrow OM\bot AB\Rightarrow\angle AOM=90=\angle AHM\)

\(\Rightarrow AOHM\) nội tiếp

b) MKBA nội tiếp \(\Rightarrow\angle MKA=\angle MBA=45\) (M là điểm chính giữa)

\(\Rightarrow\Delta MHK\) vuông cân tại H

c) Chu vi của tam giác OPK là: \(OP+OK+PK\)

Ta có: \(\left(OP+OK+PK\right)^2\le3\left(OP^2+OK^2+PK^2\right)\) (BĐT Bunhia)

\(\Rightarrow OP+OK+PK\le\sqrt{3\left(OK^2+OP^2+PK^2\right)}=\sqrt{3.2OK^2}=\sqrt{6}OK\)

Để chu vi tam giác OPK lớn nhất \(\Rightarrow\) OK lớn nhất \(\Rightarrow\) K là điểm chính giữa cung BMundefined

1: góc ACB=1/2*180=90 độ

góc HKB+góc HCB=180 độ

=>CBKH nội tiếp

2: góc MCA=1/2*sđ cung MA

góc ACK=góc MBA=1/2*sđ cung MA

=>góc MCA=góc KCA

=>CA là phân giác của góc MCK

a: Xét (O) có 

ΔACB nội tiếp
AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác HCBK có 

\(\widehat{HCB}+\widehat{HKB}=180^0\)

Do đó: HCBK là tứ giác nội tiếp

b: Vì HCBK là tứ giác nội tiếp

nên \(\widehat{ACK}=\widehat{HBK}\)

mà \(\widehat{ACM}=\widehat{HBK}\left(=\dfrac{sđ\stackrel\frown{AM}}{2}\right)\)

nên \(\widehat{ACM}=\widehat{ACK}\)

13 tháng 1 2022

C2 yêu cầu gì v mik k thấy 

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
14 tháng 5 2021

   Ta có: góc AKP = 90độ ( Góc nội tiếp chắn nửa đường tròn)

Mà AK giao MN tại H =) Góc HKP = 90độ (1)

  Lại có: MC vuông góc AB =) Góc HCB = 90độ (2)

Từ (1) và (2) =) góc HKP + góc HCP = 180độ

Mà 2 góc đối nhau

=) Tứ giác BCHK nội tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

1: góc BCA=1/2*180=90 độ

góc HKB+góc HCB=180 độ

=>HCBK nội tiếp

2: góc ACM=1/2*sđ cung AM

góc ACK=góc HCK=góc MBA=1/2*sđ cung AM

=>góc ACM=góc ACK