K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2015

Ta có:

A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).

2^5 = 32 đồng 7 (mod 25) 

=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).

Mặt khác:

A= 2^9 +2^99 =2^9(1+2^90) 

mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)

=> 2^9 +2^99 đồng dư 0 (mod 25)

BCNN(4;25)  =100

=> A đồng dư 0 (mod 100)

hay A chia hết cho 100.

Vậy ___________________

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

22 tháng 8 2018

a)

10^33 có dạng 10...0

=> 10^33 + 8 có dạng 10...08 chia hết cho 2

=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9

b) c) d) tương tự

22 tháng 8 2018

a) 10 mủ mấy cũng chỉ có số 0 và 1

\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )

         ( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )

b) 10 mủ mấy cũng chỉ có số 0 và 1

\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )

         ( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )

d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9

Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0

    cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3

Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9

\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9

Câu b mk hông biết bạn tự làm nha

Hk tốt

1 tháng 1 2017

A)...32a+7b=29a+3a+7b

​29a tất nhiên chia hết cho 29: 3a+7b chia hết ho 29=>đpcm

​b)3a+7b+29b lập luân (a)=>đpcm

​c)2(3a+7b)+29a+29 a=>đpvm

​d)

11 tháng 9 2017

a) \(n^2-4n+29=\left(n^2-4n+4\right)+25=\left(n-2\right)^2+25\)

Để \(n^2-4n+29⋮5\Rightarrow\left(n-2\right)^2⋮5\)

Do 5 là số nguyên tố nên \(\left(n-2\right)⋮5\Rightarrow n=2k+5\left(k\in Z\right)\)

b) \(n^2+2n+6=\left(n+4\right)\left(n-2\right)+14\)

Vậy để \(\left(n^2+2n+6\right)⋮\left(n+4\right)\Rightarrow14⋮\left(n+4\right)\)

\(\Rightarrow n+4\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)

\(\Rightarrow n\in\left\{-18;-11;-6;-5;-3;-2;3;10\right\}\)

c) Ta thấy:

\(n^{200}+n^{100}+1=\left(n^4+n^2+1\right)\left(n^{196}-n^{194}+n^{190}-n^{188}+...+n^4-n^2\right)+n^2+2\)

Để \(n^{200}+n^{100}+1⋮\left(n^4+n^2+1\right)\Rightarrow\left(n^2+2\right)⋮\left(n^4+n^2+1\right)\)

\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)