Tìm x để biểu thức sau đạt GTNN:
\(A=\left|x+\frac{3}{5}\right|+\left|x+\frac{1}{5}\right|+\left|x+3\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x+1|+|x+5|=|-x-1|+|x+5|\geq |-x-1+x+5|=4$
$|x+2|+|x+4|=|-x-2|+|x+4|\geq |-x-2+x+4|=2$
$|x+3|\geq 0$
Cộng theo vế thu được: $M\geq 6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} -(x+1)(x+5)\geq 0\\ -(x+2)(x+4)\geq 0\\ x+3=0\end{matrix}\right.\Leftrightarrow x=-3\)
Ta có: \(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+.....+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+....+\frac{1}{x+9}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{x+11-x+1}{\left(x+1\right)\left(x+11\right)}=\frac{12}{\left(x+1\right)\left(x+11\right)}\)
\(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(=\frac{1+1+1+1+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)
\(=\frac{5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)
\(=\frac{5}{\left(x+1\right)\left(x+11\right)\left(x+3\right)\left(x+9\right)\left(x+5\right)\left(x+7\right)}\)
\(=\frac{5}{\left(x^2+11x+x+11\right)\left(x^2+9x+3x+27\right)\left(x^2+7x+5x+35\right)}\)
\(=\frac{5}{\left(x^2+12x+11\right)\left(x^2+12x+27\right)\left(x^2+12x+35\right)}\)
A=\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+11}\)
Rút gọn hết đi ta có \(\frac{1}{x+1}-\frac{1}{x+11}\)=\(\frac{x+11}{\left(x+1\right).\left(x+11\right)}-\frac{x+1}{\left(x+1\right).\left(x+11\right)}\)
A=\(\frac{x+11-x-1}{\left(x+1\right).\left(x+11\right)}\)
A=\(\frac{10}{x^2+12x+11}\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
diều kiện xác định là các mẫu phải khác o; số chia cũng khác o nhé:
ĐK: +) \(x+5\ne0\Rightarrow x\ne-5\)
+) \(2x-15\ne0\Rightarrow x\ne\frac{15}{2}\)
+) \(x^2-25\ne0\Rightarrow\left(x+5\right)\left(x-5\right)\ne0\Rightarrow x\ne\pm5\)
+) \(1-x\ne0\Rightarrow x\ne1\)
Vậy điều kiện xác đinh của A là : \(x\ne1;x\ne\frac{15}{2};x\ne\pm5\)
Phá dấu giá trị tuyệt đối :
\(\left|x+\frac{3}{5}\right|=x+\frac{3}{5}\) nếu x \(\ge\) \(-\frac{3}{5}\) và \(\left|x+\frac{3}{5}\right|=-\left(x+\frac{3}{5}\right)\) nếu x < \(-\frac{3}{5}\)
\(\left|x+\frac{1}{5}\right|=x+\frac{1}{5}\) nếu x \(\ge\) \(-\frac{1}{5}\) và \(\left|x+\frac{1}{5}\right|=-\left(x+\frac{1}{5}\right)\) nếu x < \(-\frac{1}{5}\)
|x + 3| = x + 3 nếu x \(\ge\) -3 và |x + 3| = - (x+3) nếu x < -3
Xét các khoảng như sau:
+) Nếu x < - 3 thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) - (x+3) = -x - \(\frac{3}{5}\) - x - \(\frac{1}{5}\) - x - 3 = -3x \(-\frac{19}{5}\) > (-3). (-3) \(-\frac{19}{5}\) = 26/5
+) Nếu -3 \(\le\) x < \(-\frac{3}{5}\) thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x + 3 = -x + 11/5 > - (-3/5) + 11/5 = 14/5
+) Nếu \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\) => A = \(\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x+ 3 = x + \(\frac{17}{5}\) \(\ge\) (-3/5) + 17/5 = 14/5
+) Nếu x \(\ge\) \(-\frac{1}{5}\)=> A = \(\left(x+\frac{3}{5}\right)\) + \(\left(x+\frac{1}{5}\right)\) + x+ 3 = 3x + 19/5 \(\ge\) 3. (-1/5) + 19.5 = 16/5
Từ các trường hợp trên => A nhỏ nhất bằng 14/5 khi \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\)