K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)

16 tháng 7 2018

Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)

\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)

Vậy \(x=-1\)thì \(B_{max}=2010\)

16 tháng 7 2018

Bài 1:

\(D=\frac{x+5}{|x-4|}\)

Ta có: \(|x-4|\ge0\forall x\)

\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

Vì 1 không đổi

Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN

\(\Rightarrow x-4\)phải đạt GTLN

\(\Rightarrow x=13\)

GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)

Vậy x=3 thì D đạt GTNN
Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)

\(\Rightarrow P\le2010\)

\(\Rightarrow\)GTLN của P=2010

\(\Leftrightarrow\left(x+1\right)^{2008}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy x=-1 thì P đạt GTLN

24 tháng 7 2021

phần a có sai j ko bn

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

23 tháng 4 2017

a,x=-10

b,x=3

c,x=3

d,x=-2

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

2 tháng 7 2015

mình gửi rồi nhưng nó bị mất nên cậu chờ một tí

2 tháng 7 2015

cam on nhe 

 

a. P=2010-(x+1)^2008 
(x+1)^2008>_0 
<=> -(x+1)^2008<_0 
<=>2010-(x+1)^2008<_2010 
Vậy GTLN là 2010 

b.1010-|3-x| 
|3-x| >_0 
<=> -|3-x| <_0 
<=> 1010-|3-x| <_1010 
Vậy GTLN là 1010

@ Cre: G+ 

14 tháng 2 2018

quá đơn giản

19 tháng 8 2017

mình chỉ làm 1 bài thôi :

\(Q=1010-\left|3-X\right|\)

trường hợp này thì |3-x| phải là số tự nhiên  bé nhất => |3-x|=0 

=> 3-x=0

x=3-0=3

=> x=3 

4 tháng 5 2017

Câu 1: Lời giải:

a, Đặt \(A=\dfrac{3x+7}{x-1}\).

Ta có: \(A=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=\dfrac{3x-3}{x-1}+\dfrac{10}{x-1}=3+\dfrac{10}{x-1}\)

Để \(A\in Z\) thì \(\dfrac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Ta có bảng sau:

\(x-1\) \(1\) \(-1\) \(2\) \(-2\) \(5\) \(-5\) \(10\) \(-10\)
\(x\) \(2\) \(0\) \(3\) \(-1\) \(6\) \(-4\) \(11\) \(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\dfrac{3x+7}{x-1}\in Z\).

4 tháng 5 2017

Câu 3:

a, Ta có: \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)

Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(MAX_P=2010\) khi x = -1

b, Ta có: \(-\left|3-x\right|\le0\)

\(\Rightarrow Q=1010-\left|3-x\right|\le1010\)

Dấu " = " khi \(\left|3-x\right|=0\Rightarrow x=3\)

Vậy \(MAX_Q=1010\) khi x = 3

c, Vì \(\left(x-3\right)^2+1\ge0\) nên để C lớn nhất thì \(\left(x-3\right)^2+1\) nhỏ nhất

Ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)

\(\Rightarrow C=\dfrac{5}{\left(x-3\right)^2+1}\le\dfrac{5}{1}=5\)

Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy \(MAX_C=5\) khi x = 3

d, Do \(\left|x-2\right|+2\ge0\) nên để D lớn nhất thì \(\left|x-2\right|+2\) nhỏ nhất

Ta có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\)

\(\Rightarrow D=\dfrac{4}{\left|x-2\right|+2}\le\dfrac{4}{2}=2\)

Dấu " = " khi \(\left|x-2\right|=0\Rightarrow x=2\)

Vậy \(MAX_D=2\) khi x = 2

11 tháng 4 2017

BÀI 2: giờ thứ 3 chảy được số phần trăm là:

                100.3:8=37,5%(bể)

           giờ thứ 3 chảy được số phần trăm bể là:

                100-40-37,5= 22,5%(bể)

         1% tương ứng: 1080 : 22,5= 48 (lít nước)

         bể đó chứa được:

                 100. 48= 4800 lít