Tìm x, y nguyên biết: xy – 3y + x = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$xy+3x+3y=-16$
$(xy+3x)+(3y+9)=-7$
$x(y+3)+3(y+3)=-7$
$(y+3)(x+3)=-7$
Vì $x,y$ nguyên nên $x+3, y+3$ nguyên. Ta có bảng sau:
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
Lời giải:
$x+3y+xy=5$
$(x+xy)+3y=5$
$x(y+1)+3(y+1)=8$
$(x+3)(y+1)=8$
Đến đây là dạng PT tích cơ bản. Bạn chỉ cần xét TH:
x+3 | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
y+1 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | -2 | 5 | -4 | -11 | -1 | 1 | -5 | -7 |
y | 7 | 0 | -9 | -2 | 3 | 1 | -5 | -3 |
xy + 3y - y = 6
xy + 2y = 6
y(x + 2) = 6.Ta có bảng sau :
y | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x + 2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |
Vậy (x ; y) = (-3 ; -6) ; (-4 ; -3) ; (-5 ; -2) ; (-8 ; -1) ; (4 ; 1) ; (1 ; 2) ; (0 ; 3) ; (-1 ; 6)
Ta có : xy + 3y - y = 6
<=>y(x + 3 - 1) = 6
<=> y(x + 2) = 6
=> y và x + 2 thuộc ước của 6 là - 6 ;- 3 ;- 2 ;- 1 ;1 ;2 ;3 ;6
Nếu x + 2 = - 6 thì y = - 1 => x = - 8 thì y = - 1
x + 2 = - 3 thì y = - 2 => x = - 5 thì y = - 2
..................... (tự liệt kê tiếp nhé)
Vậy ..............
1)2x+3y+xy=5
=>x(2+y)+3y=5
=>x(2+y)+3y+6=5+6
=>x(2+y)+3(2+y)=11
=>(x+3)(2+y)=11
=>(x+3) và (2+y) thuộc Ư(11)={-1;1;-11;11}
Ta có bảng sau:
x+3 -1 -11 1 11
2+y -11 -1 11 1
x -4 -14 -2 8
y -13 -3 9 -1
Vậy các cặp (x,y) cần tìm thỏa mãn đề bài là: (-4; -13); (-14; -3); (-2; 9); (8; -1)
2)xy+2x+2y=-16
=>x(2+y)+2y=-16
=>x(2+y)+2y+4=-16+4
=>x(2+y)+2.(2+y)=-12
=>(2+y)(x+2)=-12
=>(2+y) và (x+2) thuộc Ư(-12)={-1;1;-2;2;-3;3;-4;4;-6;6;-12;12}
Ta có bảng sau:
2+y -1 -12 -2 -6 -3 -4
x+2 -12 -1 -6 -2 -4 -3
y -3 -14 -4 -8 -5 -6
x -14 -3 -8 -4 -6 -5
Vậy các cặp số(x,y) cần tìm thỏa mãn đề bài là : (-14; -3); (-3; -14); (-8; -4); (-4; -8); (-6; -5); (-5; -6)
\(xy-x-3y=2\)
\(\Leftrightarrow\left(xy-x\right)-\left(3y-3\right)=5\)
\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5\)
Dễ rồi tự giải tiếp nhé
=>x(y-2)+3y-6=15
=>(y-2)(x+3)=15
=>\(\left(x+3;y-2\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;17\right);\left(12;3\right);\left(-4;-13\right);\left(-18;1\right);\left(0;7\right);\left(2;5\right);\left(-6;-3\right);\left(-8;-1\right)\right\}\)
a) \(x\left(y-7\right)+y-12=0\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y-7\right)+y-7-5=0\)
\(\Rightarrow\left(x+1\right)\left(y-7\right)=5\)
\(\Rightarrow\left(x+1\right);\left(y-7\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;2\right);\left(0;12\right);\left(-6;6\right);\left(4;8\right)\right\}\)
b) xy - 6x - 4y + 13 = 0
x(y - 6) - 4y + 24 - 11 = 0
x(y - 6) - 4(y - 6) = 11
(y - 6)(x - 4) = 11
TH1: x - 4 = 1 và y - 6 = 11
*) x - 4 = 1
x = 5
*) y - 6 = 11
y = 17
TH2: x - 4 = -1 và y - 6 = -11
*) x - 4 = -1
x = 3
*) y - 6 = -11
y = -5
TH3: x - 4 = 11 và y - 6 = 1
*) x - 4 = 11
x = 15
*) y - 6 = 1
y = 7
TH4: x - 4 = -11 và y - 6 = -1
*) x - 4 = -11
x = -7
*) y - 6 = -1
y = 5
Vậy ta có các cặp giá trị (x; y) sau:
(-7; 5); (15; 7); (3; -5); (5; 17)
Ta có xy - 3y + x = 16
=> xy - 3y + x - 3 = 13
=> y(x - 3) + (x - 3) = 13
=> (y + 1)(x - 3) = 13
Lập bảng xét các trường hơp
Vậy các cặp (x;y) nguyên tìm được là (4 ; 12) ; (16 ; 0) ; (2;-14) ; (-10; -2)
\(xy-3y+x=16\)
\(\Leftrightarrow y\left(x-3\right)+x-3=13\)
\(\Leftrightarrow\left(x-3\right)\left(y+1\right)=13\)
Mà \(x,y\)nguyên nên ta có bảng giá trị sau: