a).x(x-y)+y(x+y) tại x= -6 và y =8
b).x.(x^2-y)-x^2-x^2.(x+y)+y(x^2-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
=100
b: \(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy\)
\(=-2xy\)
a) \(=x^2-xy+xy+y^2=x^2+y^2\)tự thay rồi tính nha
b) \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\) tự thay vào nha
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.
a) \(x\left(x-y\right)+y\left(x+y\right)=x^2-xy+xy+y^2=x^2+y^2\)
Thay x=-6 ; y=8 ta có:
\(x^2+y^2=\left(-6\right)^2+8^2=36+84=100\)
b)\(x\left(x^2-y\right)-x^2\left(x-y\right)+y\left(x^2-x\right)\\ =x^3-xy-x^3+x^2y+x^2y-xy\\ =2x^2y-2xy\\ =2xy\left(x-1\right)\)
Với x=\(\frac{1}{2}\) ; y=-100 ta có:
\(2xy\left(x-1\right)=2\cdot\frac{1}{2}\cdot\left(-100\right)\cdot\left(\frac{1}{2}-1\right)=-100\cdot-\frac{1}{2}=50\)
Lời giải:
a)
$x(x-y)+y(x+y)=x^2-xy+xy+y^2=x^2+y^2=(-6)^2+(-5)^2=61$
b)
$x(x^2-y)-x^2(x+y)+y(x^2-x)=x^3-xy-x^3-x^2y+x^2y-xy$
$=-2xy=-2.\frac{1}{2}.(-100)=100$
a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)
b \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)
a)` x(x - y) + y(x + y) `
`=x^2-xy+xy+y^2`
`=x^2+y^2`(1)
thay x= -6 ; y= 8 vào 1 ta đc
\(\left(-6\right)^2+8^2=36+64=100\)
b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `
`=x^3-xy-x^3-xy+yx^2-xy`
`=\(-3xy+yx^2\)(2)
thay `x= 1/2 và y = -100` ta đc
\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)
\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)
b, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)
c, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)
d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)
\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)
\(a,x\left(y-2\right)=8\\ \Rightarrow x;\left(y-2\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(x\) | \(-8\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) |
\(y-2\) | \(-1\) | \(-2\) | \(-4\) | \(-8\) | \(8\) | \(4\) | \(2\) | \(1\) |
\(y\) | \(1\) | \(0\) | \(-2\) | \(-6\) | \(10\) | \(6\) | \(4\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-4;0\right),\left(-2;-2\right),\left(-1;-6\right),\left(2;6\right),\left(4;4\right),\left(8;3\right)\)
\(b,\left(x-1\right)\left(y-2\right)=9\\ \Rightarrow\left(x-1\right),\left(y-2\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
\(x-1\) | \(-9\) | \(-3\) | \(-1\) | \(1\) | \(3\) | \(9\) |
\(y-2\) | \(-1\) | \(-3\) | \(-9\) | \(9\) | \(3\) | \(1\) |
\(x\) | \(-8\) | \(-2\) | \(0\) | \(2\) | \(4\) | \(10\) |
\(y\) | \(1\) | \(-1\) | \(-7\) | \(11\) | \(5\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-2;-1\right),\left(0;-7\right),\left(2;11\right),\left(4;5\right),\left(10;3\right)\)
a)Ta có: x(x-y) + y(x+y)
= x2-xy+xy+y2
=x2+y2
Thay x=-6 và y=8 vào biểu thức ta được:
(-6)2+82=36+64=100
Vậy tại x=-6 và y=8 thì giá trị biểu thức là 100
a )
Thay x = -6 và y = 8 vào phương trình , ta có :
-6.( -6 -8 ) + 8.(-6+8 )
=36 + 48 - 48 + 64
= 36 + 64
= 100
a) x ( x - y ) + y ( x + y )
= x2 - xy + xy + y2
= x2 + y2
Thay x = -6 và y = 8 , ta được :
( -6 )2 + 82 = 36 + 64 = 100
b) x ( x2 - y ) - x2 - x2 ( x + y ) + y ( x2 - x )
= x3 - xy - x2 - x3 - x2y + x2y - xy
= ( x3 - x3 ) - ( xy + xy ) - ( x2y - x2y ) - x2
= -2xy - x2