Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a âm thì :
\(\dfrac{1}{a}\) cũng sẽ luôn luôn âm
Với a dương thì:
\(\dfrac{1}{a}\) cũng sẽ luôn luôn dương
Điều này xảy ra vì 1 là số dương,nếu mẫu là âm thì kq âm,và ngược lại
\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)
\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)
Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
Em tham khảo bài tương tự tại link dưới đây nhé.
Câu hỏi của Monkey D Luffy - Toán lớp 6 - Học toán với OnlineMath
Gọi x là 1 số hữu tỉ âm (1)
=> x<0
=>\(\frac{1}{x}< 0\) (2)
mà x và \(\frac{1}{x}\) là 2 số nghịch đảo (3)
Từ (1); (2) và (3)
=> Số nghịch đảo của 1 số hữu tỉ âm là 1 số hữu tỉ âm (đpcm)
a) \(a.\frac{1}{a}=1>0\)nên \(a,\frac{1}{a}\)cùng dấu do đó nghịch đảo của một số dương là một số dương, nghịch đảo của một số âm là một số âm.
b) \(\frac{1}{a}\inℤ\)mà \(a\inℤ\)suy ra \(a\inƯ\left(1\right)=\left\{-1,1\right\}\).