K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 6 2021

\(2\left(a+b\right)=2\sqrt{ab}\left(a-b\right)\le\frac{\left(2\sqrt{ab}\right)^2+\left(a-b\right)^2}{2}=\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(2-\frac{a+b}{2}\right)\le0\Leftrightarrow\frac{a+b}{2}\ge2\Leftrightarrow a+b\ge4\)(vì \(a,b>0\))

Dấu \(=\)khi \(\hept{\begin{cases}2\sqrt{ab}=a-b\\a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\).

AH
Akai Haruma
Giáo viên
12 tháng 6 2023

Biểu thức P đâu bạn?

18 tháng 6 2023

đây ạ

NV
11 tháng 6 2021

Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)

13 tháng 7 2018

Đặt \(\frac{a+b}{\sqrt{ab}}=t\ge2\)

Thế vào :\(A\ge\frac{\sqrt{ab}}{a+b}+\frac{16.\frac{\left(a+b\right)^2}{2}}{ab}=\frac{\sqrt{ab}}{a+b}+\frac{8\left(a+b\right)^2}{ab}=\frac{1}{t}+8t^2\)

\(=\frac{1}{2t}+\frac{1}{2t}+\frac{1}{16}t^2+\frac{127t^2}{16}\)

\(\ge\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}+\frac{127t^2}{16}=3\sqrt[3]{\frac{1}{4}.\frac{1}{16}}+\frac{127t^2}{16}\ge\frac{3}{4}+\frac{127.2^2}{16}=\frac{3}{4}+\frac{127}{4}=\frac{130}{4}=\frac{65}{2}\)

Vậy min A=\(\frac{65}{2}\) đạt được khi \(t=2\Rightarrow\frac{a+b}{\sqrt{ab}}=2\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=0\Rightarrow a=b\)

16 tháng 7 2018

sorry,hàng thứ 4 biểu thức đầu tiên  là \(3\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}\) nha

14 tháng 9 2017

\(A=\frac{a^2+3ab+b^2}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a^2+2ab+b^2\right)+ab}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a+b\right)^2+ab}{\sqrt{ab}\left(a+b\right)}\)

\(=\frac{\left(a+b\right)^2}{\sqrt{ab}\left(a+b\right)}+\frac{ab}{\sqrt{ab}\left(a+b\right)}=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Áp dụng bđt AM - GM ta có : \(A\ge2\sqrt{\frac{a+b}{\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a+b=\sqrt{ab}\)

làm tiếp đoạn của Đinh Đức Hùng

\(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}=\frac{a+b}{\sqrt{ab}}+\frac{4\sqrt{ab}}{a+b}-\frac{3\sqrt{ab}}{a+b}\ge4-\frac{\frac{3}{2}\left(a+b\right)}{a+b}=4-\frac{3}{2}=\frac{5}{2}\)

18 tháng 10 2020

Xét bất đẳng thức phụ\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)(*)

Thật vậy: (*)\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\)

Áp dụng kết hợp bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức AM - GM, ta được: \(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^4}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)^6}{4}}=\left(b+c\right)^3\)

Vậy bất đẳng thức phụ trên là đúng. Tương tự rồi cộng lại ta được \(VT\ge1\)

Đẳng thức xảy ra khi 3 biến bằng nhau hoặc có 2 biến dần về 0