Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Đặt \(\frac{a+b}{\sqrt{ab}}=t\ge2\)
Thế vào :\(A\ge\frac{\sqrt{ab}}{a+b}+\frac{16.\frac{\left(a+b\right)^2}{2}}{ab}=\frac{\sqrt{ab}}{a+b}+\frac{8\left(a+b\right)^2}{ab}=\frac{1}{t}+8t^2\)
\(=\frac{1}{2t}+\frac{1}{2t}+\frac{1}{16}t^2+\frac{127t^2}{16}\)
\(\ge\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}+\frac{127t^2}{16}=3\sqrt[3]{\frac{1}{4}.\frac{1}{16}}+\frac{127t^2}{16}\ge\frac{3}{4}+\frac{127.2^2}{16}=\frac{3}{4}+\frac{127}{4}=\frac{130}{4}=\frac{65}{2}\)
Vậy min A=\(\frac{65}{2}\) đạt được khi \(t=2\Rightarrow\frac{a+b}{\sqrt{ab}}=2\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=0\Rightarrow a=b\)
sorry,hàng thứ 4 biểu thức đầu tiên là \(3\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}\) nha
\(P=\frac{\frac{a^2+b^2+ab}{ab}.\frac{a^2-2ab+b^2}{a^2b^2}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{\frac{a^4-2a^3b+a^2b^2+a^2b^2-2ab^3+b^4+a^3b-2a^2b^2+ab^3}{a^3b^3}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)
\(=\frac{a^4+b^4-a^3b-ab^3}{a^3b^3}:\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{1}{ab}\)