Cho A=1^2011+2^2011+3^2011+...99^2011+100^2011 và B=1+2+3+...+99+100.Chứng minh rằng A chia hết cho B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 100 - 99 + 98 -97 + 96 -95 +...+ 4-3 + 2
= (100 - 99) + (98 -97) + (96 - 95) +...+ (4-3) +2 (gồm 49 cặp và 1 số hạng)
= 1+1+1+....+1 +2
= 49 x 1 + 2 = 51
b) 100 - 5-...-5 - 5 (20 số 5)
= 100 - 20 x 5 = 0
c) 99 - 9 - 9 -... - 9 -9 (11 số 9)
=99 - 11 x 9 = 0
d) 2011 + 2011+2011+2011 - 2008 x 4
= 2011 x 4 - 2008 x 4
= 4 x (2011 - 2008)
= 4 x 3
=12
Đầu tiên ta phân tích A
A = 1/1-1/2+1/3-1/4+...+1/99-1/100
sau đó chia vế A thành 2 phần
A = (1/1+1/3+...+1/99) - (1/2+1/4+...+1/100)
gọi (1/1+1/3+...+1/99) = a
gọi (1/2+1/4+...+1/100) = b
áp dụng tính chất (a-b) = (a+b) - 2b
=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - 2(1/2+1/4+...+1/100)
=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - (1/1+1/2+...+1/50)
=> A = 1/1-1/1+1/2-1/2+...+1/50-1/50+1/51+1/52+...+1/100
=> A = 1/51+1/52+...+1/100
vậy A / B = \(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2011}{51}+\frac{2011}{52}+...+\frac{2011}{100}}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{2011\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}=2011\)
mà 2011 là số nguyên => (dpcm)
>>Dat Doan hơi nhầm nè, bạn phải ghi B/A chứ ko phải A/B; thành ra mới bằng 2011 chứ nếu A/B=1/2011 đó!!!
Bài 1: (Em à bài này phải là
A=20+21+22+23+24+.....+22011 mới đúng )
Nếu thế ta giải như sau:
- Có A=20+21+22+23+24+.....+22011
Nên 2A = 2 (20+21+22+23+24+.....+22011 )
= 21+22+23+24+.....+22011 + 22012
=>A = 2A - A = 22012 - 20
= 22012 - 1
Vì 22012 = 22.1006 =(22)1006 chia 3 dư 1 (vì 22 chia 3 dư 1)
Nên A = 22012 - 1 chia hết cho 3
- Lại có A=20+21+22+23+24+.....+22011
=(20+21+22)+(23+24+ 25) + ( 26 +....+22008) + (22009 + 22010 +22011 )
= (20+21+22)+23.(20+21+22) + ....+ 22009.(20+21+22)
=7+23 . 7 + ....+ 22009. 7
=7. (1+23+ +26 +29 + ....+ 22009) chia hết cho 7
Vậy A chia hết cho cả 3 và 7
Bài 2:
Có A=20+21+22+23+24+.....+22010
Nên 2A = 2 (20+21+22+23+24+.....+22010 )
= 21+22+23+24+.....+22011 + 22011
=>A = 2A - A = 22011 - 20
= 22011 - 1
= B
Vậy A = B