Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)
(*) và (1)\(\Rightarrow P=1\)
a) bài này xét chữ số tận cùng nhé
\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10
=>122000-21000 chia hết cho 10 (đpcm)
b) chưa nghĩ ra :(
đừng có chép câu TL của tui nhá cu cÒng
Điều đó là không tốt đâu thằng đệ à
Hahahaha!!!
Câu 1) Ta có\(a^3+2b^2-4b+3=0\Leftrightarrow a^3=-2.\left(b-1\right)^2-1\)\(\le-1\Rightarrow a^3\le-1\Rightarrow a\le-1\Rightarrow a^2\ge1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\)\(\Leftrightarrow\left(b-1\right)^2\le0\)
Mà \(\left(b-1\right)^2\ge0\)với mọi b nên \(\left(b-1\right)^2=0\)\(\Rightarrow b=1\)
Thay b=1 vào 2 pt ban đầu được \(\hept{\begin{cases}a^3+2-4+3=0\\a^2+a^2-2=0\end{cases}}\)<=> a=1(tm)
Vậy (a,b)=(1;1)
Câu 2 bạn xem ở đây nhé http://olm.vn/hoi-dap/question/716469.html
nâng cao và phat trien toán 8 tap 1....
troi!minh ko co sach nay