K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Ta có : A =  2011 +  2011+ 2011+ .... + 20112011

=> A = 2011(1+2011+ 2011+ .... + 20112010)

=> A lẻ 

=> A không chia hết cho 2012

7 tháng 1 2021

Ta có: \(A=3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=3.40+3^5.40+...+3^{2009}.40\)

\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)

Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)

hay \(A⋮120\)  (đpcm)

14 tháng 1 2016

A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)

A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)

A-1=40+80*40+...+3^2009*40

A-1=40*(1+80+..+3^2009)

14 tháng 9 2018

a)   5^2013 + 5^2012 + 5^2011

=   5^2011 . ( 1 + 5 +5^2)

=   5^2011. 31

31 chia hết cho 31 nên số nào nhân với 31 đều chia hết cho 31

     Vậy  5^2013 +5^2012 + 5^2011 chia hết cho 31

10 tháng 12 2015

2011n luôn lẻ

2012n luôn chẵn

2013n luôn lẻ

=> 2011n + 2012n + 2013n luôn chẵn

=> Chia hết cho 2

=> ĐPCM 

AH
Akai Haruma
Giáo viên
15 tháng 9

Lời giải:

$A=1-\frac{1}{2011}+1-\frac{1}{2012}+1+\frac{2}{2010}$

$=3+(\frac{1}{2010}-\frac{1}{2011})+(\frac{1}{2010}-\frac{1}{2012})$

$> 3+0+0+0=3$

Ta có đpcm.