Bài 3: cho tam giác ABC.gọi M là trung điểm của cạnh BC.Chứng kinh rằng MA<\(\frac{AB+AC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MA lấy điểm K sao cho MK=MA
Xét \(\Delta AMB\) và \(\Delta KMC\) có:
\(AM=MK\)
\(\widehat{AMB}=\widehat{KMC}\left(đ.đ\right)\)
\(MB=MC\)
\(\Rightarrow\Delta AMB=\Delta KMC\left(c.g.c\right)\)
\(\Rightarrow AB=CK\)
Theo BĐT tam giác,ta có:
\(AC+CK>AK\)
\(\Rightarrow AC+AB>2AM\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(đpcm\right)\)
Bạn tự vẽ hình
Lấy E đối xứng với A qua M
Có M là tđ của AE và BC
nên ABCE là hình bình hành
nên AB=CE
Xét tam giác ACE có AC+CE>AE
suy ra AC+AB>2AM
hay (AC+AB)/2>AM(đpcm)
Bạn tự vẽ hình nhé !
Xét \(\Delta AMB\)và \(\Delta ECM\)có:
\(MA=ME\left(gt\right)\)
\(MB=MC\)( vì M là trung điểm BC )
\(\widehat{BMA}=\widehat{EMC}\)( 2 góc đối đỉnh )
\(\Rightarrow\Delta AMB=\Delta ECM\left(c.g.c\right)\)
Vì \(\Delta AMB=\Delta ECM\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MEC}\)( 2 góc tưởng ứng )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//CE\)
\(\text{a) xét tam giác AMB và tam giác EMC}\)
\(\text{có : MB=MC( M là trung điểm của BC)}\)
\(\text{góc AMB=góc EMC( đ đ)}\)
\(\text{AM=EM(gt)}\)
=> tam giác AMB=tam giác EMC(c-g-c)
\(\text{b) xét tam giác AMB và tam giác CME}\)
\(\text{có: AM=EM(gt)}\)
\(\text{góc AMB=góc CME (đ đ)}\)
\(\text{MB=MC(M là trung điểm của BC)}\)
=> tam giác AMB=tam giác CME(c-g-c)
=> góc CAM= góc MEC ( 2 góc tương ứng)
\(\text{mà 2 góc này ở vị trí so le trong}\)
=> AC=CE ( 2 cạnh tương ứng)
Bài 3:
Gọi M là trung điểmcủa AD
Xét tứ giác ABDC có
M là trung điểmcủa BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
\(CD+AC>AD\)
=>AB+AC>2AM
hay \(MA< \dfrac{AB+AC}{2}\)
Ta có diện tích ANM = NMB vì có hai cạnh đáy là NB=NA. Đều có chiều cao hạ từ đỉnh M.
Diện tích tam giác BAM là
Ta có diện tích ANM = NMB vì có hai cạnh đáy là NB=NA. Đều có chiều cao hạ từ đỉnh M.
Diện tích tam giác BAM là
6+6 =12 (cm2)
Diện tích tam giác ABM = AMC vì có đáy BM = Mc. Đều có chiều cao hạ từ đỉnh A nên diện tich ABC là :
12+12=24 (cm2)
Đ/S : 24 cm2