Tìm x,y thuộc Z,biết :
a)\(2x+y+3xy=5 \)
b)\(4x-y-2y=7\)
Mọi người giải giúp mình.Một câu thôi cũng được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x2+3xy-2y2=7
\(\Rightarrow2x^2-xy+4xy-2y^2=7\)
\(\Rightarrow x\left(2x-y\right)+2y\left(2x-y\right)=7\)
\(\Rightarrow\left(2x-y\right)\left(x+2y\right)=7\)
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
\(\Leftrightarrow2\left(2x-y\right)+x+2y=15\)
\(\Leftrightarrow5x=15\Leftrightarrow x=3,y=-1\left(TM\right)\)
Tương tự:
Nếu 2x-y=1,x+2y=7\(\Leftrightarrow x=1,8;y=2,6\left(KTM\right)\)
Nếu 2x-y=-1,x+2y=-7\(\Leftrightarrow x=-1,8;y=-2,6\left(KTM\right)\)
Nếu 2x-y=-7 , x+2y=-1\(\Leftrightarrow x=-3,y=1\left(TM\right)\)
Vậy (x;y) là (3;-1);(-3;1)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)
suy ra :
\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)
\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)
\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)
bạn xem lại đề ra số hơi xấu
a) 2x + y + 3xy = 5
6x + 3y + 9xy = 15
(9xy + 6x) + 3y = 15
3x(3y+2) + (3y+2) = 17
(3x+2)(3y+1) = 17
bạn tự giải tiếp nhé
a, 2x+y+3xy=5
<=>6x+3y+9xy=3.5
<=>3x(1+3y)+3y+1=15+1
<=>3x(1+3y)+(1+3y)=16
<=>(3x+1)(1+3y)=16
=>3x+1,1+3y thuộc Ư(16)
Vì 3x + 1 chia 3 dư 1 => 3x + 1 thuộc {1;-2;4;-8;16}
=> 1 + 3y thuộc {16;-8;4;-2;1}
Lâp bảng:
Vậy các cặp (x;y) là (0;5);(-1;-3);(1;1);(-3;-1);(5;0)