giai phuong trình :
(2x2+3x-1)2-3(2x2+3x-5)-16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=2x^2-3x-1\)
\(\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Rightarrow t^2-3t+12-16=0\)
\(\Rightarrow t^2-3t-4=0\)
\(\Rightarrow\left\{{}\begin{matrix}t_1=-1\\t_2=4\end{matrix}\right.\)
\(TH_1:t=-1\)
\(\Leftrightarrow2x^2-3x-1=-1\)
\(\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(TH_2:t=4\)
\(\Leftrightarrow2x^2-3x-1=4\)
\(\Leftrightarrow2x^2-3x-5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{5}{2}\end{matrix}\right.\)
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(2x^2-2x+\left(x+1-\sqrt{3x+1}\right)+2\left(x+2-\sqrt[3]{19x+8}\right)=0\)
\(\Leftrightarrow2x^2-2x+\dfrac{x^2-x}{x+1+\sqrt[]{3x+1}}+\dfrac{\left(x+7\right)\left(x^2-x\right)}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{19x+8}+\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(2+\dfrac{1}{x+1+\sqrt[]{3x+1}}+\dfrac{x+7}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{19x+8}+\sqrt[3]{\left(19x+8\right)^2}}\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
(x + 2)( x 2 – 3x + 5) = (x + 2) x 2
⇔ (x + 2)( x 2 – 3x + 5) – (x + 2) x 2 = 0
⇔ (x + 2)[( x 2 – 3x + 5) – x 2 ] = 0
⇔ (x + 2)( x 2 – 3x + 5 – x 2 ) = 0
⇔ (x + 2)(5 – 3x) = 0
⇔ x + 2 = 0 hoặc 5 – 3x = 0
x + 2 = 0 ⇔ x = -2
5 – 3x = 0 ⇔ x = 5/3
Vậy phương trình có nghiệm x = -2 hoặc x = 5/3
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
a) Tìm được x = 2,2
b) Tìm được x = 2073
c) Tìm được x = 4 hoặc x = -2
d) Điều kiện x≠-1 . Tìm được x = 0 hoặc x = 3