Chứng minh A = 5n+2 + 5n+1 + 5n chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1
=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )
=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 24 )
=> A = 1.31 + 25 .31 + ..... + 25n-6.31
=> A = 31.( 1 + 25 + ..... + 25n-6 )
Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )
\(\text{Đặt }A=\left(2^0+2^1+2^2+2^3+2^4\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)
\(=\left(1+2 +4+8+16\right)+...+2^{5n-5}.\left(2^0+2^1+2^2+2^3+2^4\right)\)
\(=31+...+2^{5n-5}.31\)
\(=31.\left(1+...+2^{5n-5}\right)\text{chia hết cho 31}\left(đpcm\right)\)
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
A=5^n+2+5^n+1+5^n
A=5^n(25+5+1)
A=5^n.31 chia hết cho 31
Vậy A chia hết cho 31
\(A=5^n^{+2}+5^n^{+1}+5^n\)
\(A=5^n\cdot5^2+5^n\cdot5+5^n\cdot1\)
\(A=5^n(25+5+1)\)
\(A=5^n\cdot31\)
Vì có thừa số 31 trong tích
=> A chia hết cho 31 \((đcpm)\)