Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi ƯCLN(5n + 3, 3n + 2) = d
Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
=> 15n + 10 - (15 n + 9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
b, Gọi ƯCLN(4n + 3, 6n + 4) = d
Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n + 9 - (12n + 8) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
c, Gọi ƯCLN(12n + 5, 5n + 2) = d
Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)
=> 60n + 25 - (60n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = {1;-1}
Vậy...
Gọi d là ƯCLN của 5n + 3 và 3n + 2
Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d
=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d
=> 15n + 10 - 15n - 9 = 1 chia hết cho d
=> d = 1
Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
a: TH1: n=2k
A=(n+2)(n+5)
=(2k+2)(2k+5)
=2(k+1)(2k+5)\(⋮\)2(1)
TH2: n=2k+1
\(A=\left(n+2\right)\left(n+5\right)\)
\(=\left(2k+1+2\right)\left(2k+1+5\right)\)
\(=\left(2k+3\right)\left(2k+6\right)\)
\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)
Từ (1),(2) suy ra \(A⋮2\)
b: TH1: n=3k
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)
\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)
TH2: n=3k+1
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)
\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)
=(6k+5)(3k+7)(15k+7)
=>B không chia hết cho 3
Vậy: B không chia hết cho 3 với mọi n
nếu ý bạn là : 5*n = 5xn hoặc 5n thì giải như sau :
a) ta có 5n + 12 = 5n + 10 + 2 = 5(n + 2 ) + 2 vì đã có 5 ( n+ 2 ) chia hết cho n + 2 nên chỉ cần 2 chia hết cho n+2 là được .
vậy chỉ có thể chọn n = 0
b) cũng như cách phân tích như ở phần a ta có : 5n + 7 = 5n + 5 + 2 = 5 ( n + 1 ) + 2 (1)
tương tự ta có : 2n + 3 = 2n + 2 + 1 = 2( n + 1 ) + 1 (2)
xét (1 ) ta có 5 (n +1 ) +2 = 5 ( n + 1 ) + (1 + 1) => nếu n = 1 thì (1) có Ư là : 2 và 1
xét (2) ta có 2 ( n + 1 ) + 1 = 2( n + 1 ) + ( 0 + 1 )=>nếu n = 0 thi (2) cóƯ là : 1
vậy (1) và (2) chỉ có 1 Ư chung là 1 nên chúng là 2 số NT cùng nhau
c) 5n + 12 = 5n + 10 + 2 = 5 ( n + 2 ) + 2 ( đpcm )
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2