Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
n^3 + 5n
= n^3 - n + 6n
= n(n^2 - 1) + 6n
= n(n - 1)(n + 1) + 6n
(n-1)n(n+1) là tích của 3 stn liên tiếp
=> n(n-1)(n+1) chia hết cho 2 và 3 mà (2;3) = 1
=> n(n-1)(n+1) chia hết cho 6
có 6n chia hết cho 6
=> n(n-1)(n+1) + 6n chia hết cho 6
=> n^3 + 5n chia hết cho 6 với mọi n thuộc N
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
a) Sửa đề:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)
Ta có:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ
= 5ⁿ.(5² + 5 + 1)
= 5.31 ⋮ 31
Vậy A ⋮ 31
b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺² - 2ⁿ
= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)
= 3.10 + 2ⁿ⁻¹.2.5
= 10.(3 + 2ⁿ⁻¹) ⋮ 10
Vậy B ⋮ 10
Ta có: Vì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> chia hết cho 6 (đpcm)
Ta có n3 + 5n = n3 - n + 6n
= n(n2 - 1) + 6n
= n(n2 - n + n - 1) + 6n
= n[n(n - 1) + (n - 1)] + 6n
= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n
Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp)
Lại có 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮\)6 \(\forall n\inℤ^+\)
với n = 2k thì :
( 5.2k + 7 ) . ( 4.2k + 6 )
= ( 10k + 7 ) . ( 8k + 6 )
= ( 10k + 7 ) . 2 . ( 4k + 3 ) \(⋮\)2
với n = 2k + 1 thì :
[ 5 . ( 2k + 1 ) + 7 ] . [ 4 . ( 2k + 1 ) + 6 ]
= ( 10k + 5 + 7 ) . ( 8k + 4 + 6 )
= ( 10k + 12 ) . ( 8k + 10 )
= 2 . ( 5k + 6 ) . 2 . ( 4k + 5 ) \(⋮\)2
Thanks, nhưng có thể làm kiểu phân phối của lớp 6 đc ko?
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
\(3^{5n+2}+3^{5n+1}-3^{5n}(n\in N^*)\\=3^{5n}\cdot3^2+3^{5n}\cdot3-3^{5n}\\=3^{5n}\cdot(3^2+3-1)\\=3^{5n}\cdot11\)
Vì \(3^{5n}\cdot11\vdots11\)
nên biểu thức \(3^{5n+2}+3^{5n+1}-3^{5n}\vdots11\)