tìm a thuộc N để \(a-2,4a^2-16a+17,6a^2-24a+25\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
(+) Với n = 1
=> A=1 ( là số chính phương )
(+) Với n = 2
=> A = 3 ( không phải là số chính phương )
(+) ......
(+) Với \(n\ge4\)
Ta có : 1! + 2! + 3! + 4! = 33 có tận cúng là mà .
Mặt khhacs các số 5! ; 6! ; ... luôn có tận cùng = 0
=> A có tận cung là 3
Mà số chính phương không bao giờ có tận cùng là 3 .
=> n = 1
Vậ n = 1
Đặt a + 13 = h2
a - 76 = k2 ( h,k thuộc Z )
=> h2 - k2 = a + 13 -a + 76 = 89
<=> ( h - k ) ( h + k ) =89
<=> h - k =1 và h + k = 89
hoặc h - k = 89 và h + k =1
hoặc h - k = -1 và h + k = -89
hoặc h - k = - 89 và h + k = -1
đến đây bạn tự giải nhé, nhớ là tìm a ko phải tìm h,k
\(n^2+2018=k^2\Leftrightarrow\left(k^2-n^2\right)=\left(k-n\right)\left(k+n\right)=2018\)=1.1009=(-1).(-2009)
k-n=1
k+n=1009
n=1008/2=504
b) tuong tu (k-n)(k+n)=25=5^2=1.25
k-n=k+n=>n=0
k-n=1& k+n=25=>n=12
KL: n={0,12}
\(4a^2-16a+17=\left(2a-4\right)^2+1\)là số chính phương nên \(4a^2-16a+17=\left(2a-4+1\right)^2=\left(2a-3\right)^2\Leftrightarrow a=2\).
Thử lại: \(2-2=0,4.2^2-16.2+17=1,6.2^2-24.a+25=1\).