Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
hahaha bọn mày ơi
vào trang chủ của : Edward Newgate đê
hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))
Ta có:
\(A=2^9+2^{13}+2^n\)
Xét \(n\ge9\)ta có
\(A=2^9\left(1+2^4+2^{n-9}\right)\)
A chia hết cho 29 nên A phải chia hết cho 210 (vì A là số chính phương).
\(\Rightarrow1+2^4+2^{n-9}\)là số chẵn
\(\Rightarrow2^{n-9}\)là số lẻ
\(\Rightarrow n-9=0\)
\(\Rightarrow n=9\)
Thế ngược lại ta được: \(A=2^9+2^{13}+2^9=9216\)(đúng)
Xét \(n\le8\)thì ta có.
\(A=2^9+2^{13}+2^n=2^n\left(2^{9-n}+2^{13-n}+1\right)\)
Dễ thấy thừa số trong ngoặc luôn là số lẻ nên A sẽ không thể là số chính phương được
Vậy n = 9 thì A là số chính phương
Tham khảo ở đây:
https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn
\(n^2+n+6=a^2\)
\(\Rightarrow4n^2+4n+24=4a^2\)
\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)
\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
Theo (1) ta thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)
Từ đó ta tìm được a=6a=6, n=5n=5.
Vậy n=5 là giá trị cần tìm
Đặt a + 13 = h2
a - 76 = k2 ( h,k thuộc Z )
=> h2 - k2 = a + 13 -a + 76 = 89
<=> ( h - k ) ( h + k ) =89
<=> h - k =1 và h + k = 89
hoặc h - k = 89 và h + k =1
hoặc h - k = -1 và h + k = -89
hoặc h - k = - 89 và h + k = -1
đến đây bạn tự giải nhé, nhớ là tìm a ko phải tìm h,k