Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt:
\(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=3\) và \(x,y,z\ge0\) (*)
Biểu thứ P trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ (*) dễ thấy:
\(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)
Do đó:
\(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)
Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)
Lời giải:
$a(b-c)^2+b(a-c)^2\vdots a+b$
$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$
$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$
$\Leftrightarrow 4abc\vdots a+b$
Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$
Khi đó;
$4abc\vdots p\Leftrightarrow abc\vdots p$
$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$
Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)
Nếu $b\vdots p$ thì tương tự (vô lý)
Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$
$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)
Do đó điều giả sử sai. Tức $a+b$ là hợp số.