x2+4x+4=25
giúp mình nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=4^2+4^3+...+4^{25}\)
\(\Rightarrow4D=4^3+4^4+...+4^{26}\)
\(\Rightarrow3D=4D-D=4^3+4^4+...+4^{26}-4^2-4^3-...-4^{25}=4^{26}-4^2\)
\(\Rightarrow D=\dfrac{4^{26}-4^2}{3}\)
\(\dfrac{2}{5}:\dfrac{6}{25}\\ =\dfrac{2}{5}\times\dfrac{25}{6}\\ =\dfrac{2}{5}\times\dfrac{5\times5}{2\times3}=\dfrac{5}{3}\)
\(\dfrac{2}{5}:\dfrac{6}{25}\)
\(=\dfrac{2}{5}\times\dfrac{25}{6}\)
\(=\dfrac{2}{5}\times\dfrac{5\times5}{2\times3}\)
\(=\dfrac{5}{3}\)
a) Để rút gọn biểu thức (x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x, ta thực hiện các bước sau:
(x+2)(x^2+4x+4) = x(x^2+4x+4) + 2(x^2+4x+4)
= x^3 + 4x^2 + 4x + 2x^2 + 8x + 8
= x^3 + 6x^2 + 12x + 8
(x-2)(x^2-4x-4) = x(x^2-4x-4) - 2(x^2-4x-4)
= x^3 - 4x^2 - 4x - 2x^2 + 8x + 8
= x^3 - 6x^2 + 4x + 8
Thay vào biểu thức ban đầu, ta có:
(x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x
= (x^3 + 6x^2 + 12x + 8 - (x^3 - 6x^2 + 4x - 12x^2 - x
= x^3 + 6x^2 + 12x + 8 - x^3 + 6x^2 - 4x - 8 - 12x^2 - x
= 8x + 8 - 4x - 8
= 4x
Vậy biểu thức đã được rút gọn thành 4x.
b) Để rút gọn biểu thức (x-2)(x+2)(x+3)-(x+1)(x^2-x+1), ta thực hiện các bước sau:
(x-2)(x+2) = x^2 - 2^2 = x^2 - 4
Thay vào biểu thức ban đầu, ta có:
(x-2)(x+2)(x+3)-(x+1)(x^2-x+1)
= (x^2 - 4)(x+3) - (x+1)(x^2-x+1)
= x^3 + 3x^2 - 4x - 12 - (x^3 + x^2 - x + x^2 - x + 1)
= x^3 + 3x^2 - 4x - 12 - x^3 - x^2 + x - x^2 + x - 1
= x^3 - x^3 + 3x^2 - x^2 - x^2 + 3x - 4x + x - 12 - 1
= 2x^2 - x - 13
Vậy biểu thức đã được rút gọn thành 2x^2 - x - 13.
a)\(y=x^2-4x+3=\left(x-3\right)\left(x-1\right)\)
b)\(y=x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
c)\(y=-x^2+4x-3=\left(x-3\right)\left(x-1\right)\)
d)\(y=-x^2-4x-3=\left(x+1\right)\left(x+3\right)\)
1) -x2+4x-6+ \(\frac{21}{x^2-4x+10}\)= 0
Đặt -x2+4x+10 là a, ta có:
-a +4+\(\frac{21}{a}\)=0
=> \(\frac{21+4a-a^2}{a}\)=0
=> 21+4a-a2=0
=>-(a-2)2=-25
=> (a-2)2=25 => \(\orbr{\begin{cases}a=7\\a=-3\end{cases}}\)
Bạn thay a vào rồi tính tiếp nha
A = 2\(x\) - \(x^2\) - 4
A = -(\(x^2\) - 2\(x\) + 1) - 3
A = - (\(x-1\))2 - 3
Vì (\(x-1\))2 ≥ 0 ⇒ -(\(x\) - 1)2 ≤ 0 ⇒ -( \(x\) - 1)2 - 3 ≤ - 3
Amax = -3 ⇔ \(x\) - 1 = 0 ⇔ \(x\) = 1
Vậy giá trị lớn nhất của biểu thức là 0 xảy ra khi \(x\) = 1
B = - \(x^2\) - 4\(x\)
B = -( \(x^2\) + 4\(x\) + 4) + 4
B = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ - (\(x\) + 2)2 ≤ 0 ⇒ -(\(x+2\))2 + 4 ≤ 0
Bmax = 4 ⇔ \(x+2=0\Rightarrow x=-2\)
Kết luận giá trị lớn nhất của biểu thức là 4 xảy ra khi \(x\) = - 2
\(x^2+4x+4=25\)
\(x^2+4x+4-25=0\)
\(x^2+4x-21=0\)
\(x^2+7x-3x-21=0\)
\(x\left(x+7\right)-3\left(x+7\right)=0\)
\(\left(x+7\right)\left(x-3\right)=0\)
\(\orbr{\begin{cases}x+7=0\\x-3=0\end{cases}}\)
\(\orbr{\begin{cases}x=-7\\x=3\end{cases}}\)
Trả lời:
x2 + 4x + 4 = 25
<=> x2 + 4x + 4 - 25 = 0
<=> x2 + 4x - 21 = 0
<=> x2 + 7x - 3x - 21 = 0
<=> ( x2 + 7x ) - ( 3x + 21 ) = 0
<=> x ( x + 7 ) - 3 ( x + 7 ) = 0
<=> ( x - 3 ) ( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = - 7
Vậy S = { 3; - 7 }