cho \(\widehat{xOy}\)nhọn,trên tia Ox lấy A và C (A nằm giữa O và C).Trên Oy lấy B và D (B nằm giữa O và D) sao cho OA=OB;OC=OD.Gọi M và N lần lượt theo thứ tự trung điểm của AB vá CD.
a) CM:Om là đường trung trực của AB
b)CM:O,M,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )
a) Xét ΔOAD và ΔOBC có:
OA = OB (gt)
góc COD chung
OD = OC (gt)
suy ra ΔOAD = ΔOBC (cgc)
b) suy ra góc OAD = góc OBC (2 góc tương ứng)
Có góc OAD + góc OAC = 180 độ
góc OBC + góc CBD = 180 độ
mà góc OAD = góc OBC (cmt)
suy ra góc OAC = góc CBD (đpcm)
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )
a. Xét \(\Delta OAD\)và \(\Delta OBC\)
OA = OB (giả thiết)
góc O chung
OD = OC (giả thiết)
\(\Rightarrow\)\(\Delta\)OAD = \(\Delta\)OBC (c.g.c)
Vì tam giác OAD = OBC \(\Rightarrow\)góc OAD=OBC (2 góc tương ứng)
\(\Rightarrow\)Góc CAD=góc CBD.
a.Ta có: OD=OB+BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180o(kề bù) (1)
OBC+EBD=180o(kề bù) (2)
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180o
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)