So sanh A va B, biet :
a)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
b)\(A=\frac{7^{10}}{1+7+7^2+...+7^9};B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+5+5^2+..+5^9/1+5+5^2+...+5^8
=1+5^9/1+5+5^2+...+5^8
B=1+3+3^2+..+3^9/1+3+3^2+..+3^8
=1+3^9/1+3+3^2+..+3^8
đặt A' =1+5+5^2+...+5^8
5A'=5+5^2+5^3+...+5^9
5A'-A'=5+5^2+5^3+...+5^9-5-1-5-5^2-...-5^8
4A'=5^9-1=>A'=(5^9-1):4
tương tự B'=(3^9-1):4
A=1+5^9/(5^9-1)/4=4.5^9/5^9-1
B=1+3^9/(3^9-1)/4=4.3^9/3^9-1
=> A<B
xét hieeij A - B chưa làm thử đi nó mà dương thì A > B và ngược lại
Ta đặt \(A=1+5+5^2+......+5^9\Rightarrow5A=5+5^2+...+5^9+5^{10}\)
\(\Rightarrow4A=5^{10}-1\Rightarrow A=\frac{5^{10}-1}{4}\)
tTương tự \(B=1+5+5^2+......+5^8\Rightarrow B=\frac{5^9-1}{4}\)
\(C=1+3+3^2+......+3^9\Rightarrow C=\frac{3^{10}-1}{3}\)
\(D=1+3+3^2+......+3^8\Rightarrow D=\frac{3^9-1}{3}\)
Vậy \(\frac{A}{B}=\frac{5^{10}-1}{5^9-1}=\frac{5\left(5^9-1\right)+4}{5^9-1}=5+\frac{4}{5^9-1}\)
\(\frac{C}{D}=\frac{3^{10}-1}{3^9-1}=\frac{3\left(3^9-1\right)+3}{3^9-1}=3+\frac{3}{3^9-1}\)
Ta thấy \(\frac{3}{3^9-1}< 1\Rightarrow3+\frac{3}{3^9-1}< 4< 5< 5+\frac{5}{5^9-1}\)
Vậy \(\frac{A}{B}>\frac{C}{D}\) hay \(\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}>\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)