K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét (A) có

CH,CE là tiếp tuyến

=>CH=CE

Xét (A) có

BH,BD là tiếp tuyến

=>BH=BD

BC=BH+CH

=>BC=BD+CE

c: Xét tứ giác AHCE có

góc AHC+góc AEC=180 độ

=>AHCE nội tiếp

8 tháng 5 2016

giai he phuong trinh : 

x/5=y/7=z/3

2x-y+az=30

8 tháng 5 2016

x/5=y/7=z/3

2x-y+az=30

26 tháng 5 2021

a, xét tam giác ABC ta có 

AH là đường cao=> góc AHB=90 độ

lại có \(AD\perp BE\)=> góc ADB=90 độ

=>góc AHB= góc ADB=90 độ

mà D,H là 2 đỉnh liên tiếp của tứ giác ADHB

=> tứ giác ADHB nội tiếp đường tròn đường kính AB

lấy điểm O là trung điểm AB=>O là tâm đường tròn ngoại tiếp tứ giác ADHB

b, xét tam giác ABC có BE là phân giác=> góc HBD= góc ABD

lại có tam giác ABC vuông tại A=> góc ABE+ góc AEB=90 độ

hay góc ABD+ góc AED =90 độ(1)

xét tam giác ADE vuông tại E (vì AD\(\perp BE\))

=> góc EAD+góc AED=90 độ(2)

từ(1)(2)=> góc ABD= góc EAD

=>góc EAD= góc HBD(= góc ABD)

c, xét đường tròn(O) => OA=OH=OB=1/2.AB=\(\dfrac{a}{2}\)=R

có OH=OB=>tam giác BOH cân tại O 

lại có góc ABC=60 độ hay góc OBH=60 độ=> tam giác OBH đều

=> góc OBH=góc BOH=60 độ=>góc AOH=120 độ( kề bù)

=>góc AOH=số đo cung AOH=120 độ( góc ở tâm)

=> S quạt AOH=\(\dfrac{\pi.R^2.n}{360}=\dfrac{\pi.\left(\dfrac{a}{2}\right)^2.120}{360}=\dfrac{\pi.a^2.30}{360}=\dfrac{\pi.a^2}{12}\)

 

a: Vì AM là phân giác

nên sđ cung MB=sđ cung MC

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

=>OM vuông góc BC tại trung điểm của BC

b: Kẻ đường kính AD

=>góc ACD=90 độ

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>góc BAH=góc CAD

=>góc HAM=góc OAM

=>AM là phân giác của góc OAH

21 tháng 12 2016

2 cái tâm E và I ở đâu vậy bạn?

23 tháng 12 2016

nó nằm trên cạnh AC đấy bạn

10 tháng 8 2019

A B C I D E F M N H P Q

Bổ đề: Xét tam giác ABC vuông tại A, đường phân giác trong AD. Khi đó \(\frac{1}{AC}+\frac{1}{AB}=\frac{\sqrt{2}}{AD}\).

Phép chứng minh bổ đề rất đơn giản (Gợi ý: Kẻ DH,DK lần lượt vuông góc với AB,AC)

Quay trở lại bài toán: Gọi \(r\) là bán kính của đường tròn (I)

Áp dụng Bổ đề vào \(\Delta\)NAM có \(\frac{1}{AM}+\frac{1}{AN}=\frac{\sqrt{2}}{AI}\)hay \(\frac{2}{AC}+\frac{1}{AN}=\frac{\sqrt{2}}{r\sqrt{2}}=\frac{1}{r}\)

Từ đó \(\frac{1}{AN}=\frac{AC-2r}{r.AC}\Rightarrow AN=\frac{r.AC}{AC-2r}\)  

Gọi AI cắt FD tại Q. Dễ thấy ^QDC = ^BDF = 900 - ^ABC/2 = 1/2(^BAC + ^ACB) = ^QIC

Suy ra tứ giác CIDQ nội tiếp => ^CQI = ^CDI = 900. Do đó \(\Delta\)AQC vuông cân tại Q

Từ đó, áp dụng hệ quả ĐL Thales, ta có: 

\(\frac{AP}{r}=\frac{AP}{ID}=\frac{QA}{QI}=1+\frac{AN}{QM}=1+\frac{2AN}{AC}\)

\(\Rightarrow AP=\frac{r.AC+2r.AN}{AC}=\frac{r.AC+2r.\frac{r.AC}{AC-2r}}{AC}=r+\frac{2r^2}{AC-2r}=\frac{r.AC}{AC-2r}=AN\)

Vậy nên \(\Delta\)ANP cân tại A (đpcm). 

11 tháng 8 2019

bn co cach nao ma ko can dung tu giac noi tiep ko

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>góc AFH=góc AEH=góc B

ΔBAC vuông tại A

mà AM là trung tuyến

nên MA=MC

=>góc MAC=góc C

=>góc MAC+góc B=90 độ

=>AM vuông góc với EF