Bài: Cho tam giác ABC, đường phân giác của góc A cắt cạnh BC tại D (D thuộc BC), biết AB = 15cm; AC = 21cm và BD = 5cm.
a) Tính độ dài các đoạn thẳng DC và BC
b) Tính tỉ số diện tích của hai tam giác ABD và ACD
- Giúp mình với nhé, cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pi-ta-go vào tam giác ABC
\(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=20\left(cm\right)\)
Tam giác ABC có BD là đuognừ phân giác theo tính chất phân giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}\) mà theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\Leftrightarrow\frac{AD}{AC}=\frac{AB}{15+225}\Leftrightarrow\frac{AD}{20}=\frac{15}{40}\Rightarrow AD=\frac{20\times15}{40}=7,5\left(cm\right)\).
b) Xét Tam giácCHD và Tam giác CAB có
^H = ^A = 90 độ
^C chung
\(\Rightarrow\) Tam giác CHD đồng dạng với tam giácCAB
\(\Rightarrow\frac{HD}{AB}=\frac{CH}{CA}=\frac{CD}{CB}\Rightarrow CH.CB=CD.CA\).
c) Ta có: CD = AC - AD = 20 - 7,5 = 12,5(cm).
Từ tỉ số đồng dạng ở câu b ta có:
\(CH=\frac{CA.CD}{CB}=\frac{20.12,5}{25}=10\left(cm\right).\)
\(HD=\frac{AB.CH}{CA}=\frac{15.10}{20}=7,5\left(cm\right).\)
Vì tam giác HCD vuông tại H nên \(S_{CHD}=\frac{HC.HD}{2}=\frac{10.7,5}{2}=37,5\left(cm^2\right).\)
a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>MA=MN
c: Xét ΔBDC có
BE là đừog cao, là phân giác
nên ΔBDC cân tại B
=>BD=BC
BA+AD=BD
BN+NC=BC
mà BD=BC; BA=BN
nên AD=NC
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
Vì AD là đường phân giác của tam giác BAC nên ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}hay\dfrac{12}{15}=\dfrac{7}{DC}\Rightarrow DC=\dfrac{12}{15}.7=5,6cm\)
Suy ra BC=BD+DC hay BC=7+5,6 \(\Rightarrow BC=12,6cm\)
Vậy BC = 12,6 cm
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=25cm
AH=15*20/25=12cm
HB=20^2/25=16cm
HC=25-16=9cm
Vì BD là đường phân giác của A B C ^ nên: A D D C = A B B C
Suy ra: A D D C + A D = A B B C + A B (theo tính chất dãy tỉ số bằng nhau)
⇒ A D A C = A B B C + A B
Mà tam giác ABC cân tại A nên AC = AB = 15cm
Đáp án: C
a) Xét tam giác ABD và ACD
góc BAD = góc CAD
AD chung
=> 2 tam giác đồng dạng
AB/AC = BD/DC => DC = 7 => BC = 12
b) SABD / SACD = ( BD/DC ) ^2 = 25/49