K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2023

\(A=\left\{x\in N;n\in N|x=3n+1\right\}\)

\(B=\left\{x\in N;n\in N;n\ge1|x=n^3\right\}\)

(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2...
Đọc tiếp

(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25^2 -1)(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25-(a.b^2-a) với a= -1 , b=(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25 25(a^2 +b^2 -1)-(a.b^2(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25-a) với a= -1 (a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25=5 25

12
26 tháng 12 2018

Cậu thậc thú zị :v

một câu hỏi rất đáng khen ,.. very good!

14 tháng 7 2018

\(1)C=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\)

\(3C=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\)

\(3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\right)\)

\(2C=1-\dfrac{1}{162}\)

\(2C=\dfrac{161}{162}\)

\(C=\dfrac{161}{162}.\dfrac{1}{2}\)

\(C=\dfrac{161}{324}\)

\(2)A=\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\right)\)

\(A=1-\dfrac{1}{512}=\dfrac{511}{512}\)

23 tháng 2 2019

Ai bít trả lời giúp mình với nha

Y
6 tháng 8 2019

Mk nghĩ đề như này ms đúng : \(\frac{1+cosx}{1-cosx}-\frac{1-cosx}{1+cosx}=\frac{4cotx}{sinx}\)

\(VT=\frac{\left(1+cosx\right)^2-\left(1-cosx\right)^2}{1-cos^2x}=\frac{\left(1+2cosx+cos^2x\right)-\left(1-2cosx+cos^2x\right)}{sin^2x}\)

\(=\frac{4cosx}{sin^2x}=\frac{\frac{4cosx}{sinx}}{sinx}=\frac{4cotx}{sinx}\)

13 tháng 1 2019

                                 Giải

\(\frac{1}{b}-\frac{1}{b+1}=\frac{b+1-b}{b\left(b+1\right)}=\frac{1}{b\left(b+1\right)}< \frac{1}{b.b}=\frac{1}{b^2}\)

Vậy \(\frac{1}{b^2}>\frac{1}{b}-\frac{1}{b+1}\)                                                  ( 1 )

\(\frac{1}{b-1}-\frac{1}{b}=\frac{b-b+1}{b\left(b-1\right)}=\frac{1}{b\left(b-1\right)}>\frac{1}{b.b}=\frac{1}{b^2}\)

Vậy \(\frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\)                                                ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\left(đpcm\right)\)