K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Đáp án B

Phương pháp:

+) Gọi M(x;y;z) tọa độ các véc tơ  A M   → , B M →

+) Gọi H, K lần lượt là hình chiếu của A,B lên  ( α ) , có AMH = BMK

+) Tính sin các góc AMH = BMK và suy ra đẳng thức. Tìm quỹ tích điểm M là một đường tròn.

+) Tính tâm của đường tròn quỹ tích đó.

Cách giải:

Gọi M(x;y;z)

 

Gọi H, K lần lượt là hình chiếu của A, B lên  ( α ) có AMH = BMK

 

= 3

Khi đó

 

Suy ra

 

Vậy M ∈ (C) là giao tuyến của  ( α ) và (S). Tâm K của (C) là hình chiếu của

I 10 3 ; 34 3 ; - 34 3 trên mặt phẳng  ( α ) .

Phương trình đương thẳng đi qua I và vuông góc với  ( α ) có dạng

 

30 tháng 6 2018

Chọn C

Ta có:

Nên hai điểm M và N nằm cùng phía so với mặt phẳng (P)

Ta luôn có: , nên |IM - IN| lớn nhất khi và chỉ khi I là giao điểm của đường thẳng MN với mặt phẳng (P).

Đường thẳng MN có vec-tơ chỉ phương , nên phương trình đường thẳng MN là: 

Tọa độ giao điểm I của đường thẳng MN với mặt phẳng (P) ứng với t là nghiệm phương trình:

10t - 2(1+5t) + 2(3-3t) - 10 = 0 <=> t = -1

Do đó I (-10; -4; 6), từ đó ta có a = -4 và b = 6, nên T = -4 + 6 = 2.

20 tháng 6 2017

Chọn đáp án C.

24 tháng 4 2018

Đáp án A

9 tháng 12 2018

Đáp án A

14 tháng 5 2018

23 tháng 4 2018

Đáp án C.

suy ra M,N cùng phía so với (P).

Do đó  I M   - I N ≤ M N  Dấu bằng xảy ra khi I là giao điểm của MN và (P).

Phương trình đường thẳng MN là  

=> t = -1

23 tháng 10 2017

30 tháng 7 2019

17 tháng 10 2018

17 tháng 5 2017