CHo d : y=(2m-5)x+2
a, Tìm m để d đi qua A (1;-1)
b, Tìm m để d vuông góc (d1) y=1/2x +3
c, TÌm m để d cắt trục hoành và trục tung tại 2 điểm M, N sao cho S tgiac OMN =6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đường thẳng (d) đi qua điểm A(1, -5), ta cần giải hệ phương trình sau:
y = (2m + 3)x - (m^2 + 3m + 2) (1)
y = x^2 (2)
Thay x = 1 vào (1), ta có:
y = 2m + 3 - (m^2 + 3m + 2)
y = -m^2 - m + 1
Thay y từ (2) vào biểu thức trên, ta có:
x^2 = -m^2 - m + 1
x^2 + m^2 + m - 1 = 0
Để đường thẳng (d) đi qua điểm A(1, -5), phương trình (1) phải có nghiệm là y = -5 khi x = 1. Thay x = 1 và y = -5 vào (1), ta có:
-5 = 2m + 3 - (m^2 + 3m + 2)
m^2 + m - 10 = 0
(m + 2)(m - 5) = 0
Vậy, m = -2 hoặc m = 5.
Khi đó, phương trình của đường thẳng (d) sẽ là:
Khi m = -2: y = -x^2 - x - 1Khi m = 5: y = 13x - 24Thay x=1 và y=-5 vào (d), ta được:
2m+3-m^2-3m-2=-5
=>-m^2-m+6=0
=>m^2+m-6=0
=>(m+3)(m-2)=0
=>m=2 hoặc m=-3
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a: Thay x=1 và y=5 vào (d), ta được:
2m+2m-3=5
=>4m-3=5
hay m=2
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx-2m+3=0\)
Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)
=>m=-3 hoặc m=1
\(a)\) Hàm số \(y=\left(2-3m\right)x+2m-5\)đồng biến
\(\Leftrightarrow2-3m>0\)
\(\Leftrightarrow3m< 2\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy với giá trị \(m< \frac{2}{3}\)thì hàm số trên đồng biến
\(b)\) \(\left(d\right)\)đi qua gốc tọa độ
\(\Leftrightarrow\)Hàm số \(y=\left(2-3m\right)x+2m-5\)có dạng \(y=ax\)
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow2m=5\)
\(\Leftrightarrow m=\frac{5}{2}\)
Vậy \(m=\frac{5}{2}\)
\(c)\) Vì đths đi qua \(A\left(1;1\right)\)
\(\Rightarrow\)Thay \(x=1;y=1\)vào hàm số \(y=\left(2-3m\right)x+2m-5\)
Có: \(\left(2-3m\right).1+2m-5=1\)
\(\Leftrightarrow2-3m+2m-5=1\)
\(\Leftrightarrow-3-m=1\)
\(\Leftrightarrow m=-4\)
Vậy \(m=-4\)
\(d)\) Pt hoành độ giao điểm thỏa mãn:
\(2x-1=x-2\)
\(\Leftrightarrow x=-1\)
\(\Leftrightarrow y=x-2\)
\(\Leftrightarrow y=-3\)
Để \(\left(d\right);y=2x-1;y=x-2\)đồng quy thì:
\(A\left(-1;-3\right)\in d\)
\(\Leftrightarrow\left(2-3m\right)\left(-1\right)+2m-5=-3\)
\(\Leftrightarrow-2+3m+2m-5=-3\)
\(\Leftrightarrow-7+5m=-3\)
\(\Leftrightarrow5m=4\)
\(\Leftrightarrow m=\frac{4}{5}\)
\(e)\) Vì \(\left(d\right)\)cắt trục \(Oy\)tại điểm có tung độ \(=-1\)
\(\Rightarrow\left(0;-1\right)\in\left(d\right)\)
Thay \(x=0;y=-1\)vào hàm số
Có: \(\left(2-3m\right).0+2m-5=-1\)
\(\Leftrightarrow2m-5=-1\)
\(\Leftrightarrow2m=4\)
\(\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) Đths \(y=\left(2-3m\right)x+2m-5\)đi qua gốc tọa độ
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow2m=5\)
\(\Leftrightarrow m=\frac{5}{2}\)
Mà đths \(y=\left(2-3m\right)x+2m-5\)\(\in\)góc phần tư \(\left(II\right),\left(IV\right)\)
\(\Leftrightarrow2-3m< 0\)
\(\Leftrightarrow3m>2\)
\(\Leftrightarrow m>\frac{2}{3}\)
Ta có \(m=\frac{5}{2}\)(tmđk \(m>\frac{2}{3}\))
Vậy \(m=\frac{5}{2}\)
\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)
chịu thui mk mới học lớp 6
à
nên ko làm được bài lớp 9 đâu
hihi tặng bn mấy ảnh conan nè
thick ko nhé bn
hihi tặng các bn đó
a) Để đường thẳng d: (2m-1)x+(m-2)y=m2-3 đi qua gốc tọa độ thì x=y=0
\(\Rightarrow m^2-3=0\Leftrightarrow\left(m-\sqrt{3}\right)\left(m+\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m-\sqrt{3}=0\\m+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{3}\\m=-\sqrt{3}\end{matrix}\right.\)
Vậy khi \(m=\left\{-\sqrt{3};\sqrt{3}\right\}\) thì d đi qua gốc tọa độ.
b) Để đường thẳng d: (2m-1)x+(m-2)y=m2-3 đi qua điểm A thì x=3, y=5.
\(\Rightarrow3\left(2m-1\right)+5\left(m-2\right)=m^2-3\)
\(\Leftrightarrow-m^2+11m-10=0\)
\(\Leftrightarrow m\left(1-m\right)-10\left(1-m\right)=0\)
\(\Leftrightarrow\left(1-m\right)\left(m-10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-m=0\\m-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=10\end{matrix}\right.\)
Vậy khi \(m=\left\{1;10\right\}\) thì d đi qua gốc tọa độ.
a, Thay x=1;y=-1 vào đồ thị hàm số của đường thẳng d ta có:
-1=2m-5+2
\(\Leftrightarrow\)m=1
b, Vì d\(\perp\)d1\(\Rightarrow\)(2m-5)\(\times\)1/2=-1
\(\Rightarrow\)m-5/2=-1
\(\Rightarrow\)m=3/2