Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để (P) đi qua M(-2;4) thì
Thay x=-2 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot\left(-2\right)^2=4\)
\(\Leftrightarrow a\cdot4=4\)
hay a=1
Vậy: Để (P) đi qua M(-2;4) thì a=1
Lời giải:
Để $(P)$ đi qua $A(-\sqrt{3}, -3)$ thì:
$-3=(m-1)(-\sqrt{3})^2$
$\Leftrightarrow -3=(m-1).3\Leftrightarrow m-1=-1\Leftrightarrow m=0$
Khi đó:
$(P): y=-x^2$; $(d):y=2x-1$.
Hình vẽ đồ thị hàm số:
a) Để đường thẳng (d) đi qua gốc tọa độ thì m + 1 = 0 => m = 1
Vậy m=1 thì đường thẳng (d) đi qua gốc tọa độ
b) Thay x = 3; y = 4 vào đường thẳng (d) ta được:
4 = (m + 1).3 - 2m + 1
<=> 3m + 3 -2m +1 - 4 = 0
<=> m = 0
Vậy m = 0 thì đường thẳng (d) đi qua điểm A(3;4)
Sorry vì mik ko vẽ được đồ thị cho bạn
c) Đường thẳng vừa vẽ được: y = x + 1
Phương trình hoành độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
x + 1 = -2x + 4
<=> x + 2x = 4 - 1
<=> 3x = 3
<=> x = 1
Tung độ của 2 đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
y = 1 + 1
<=> y = 2
Vậy tọa độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là (1;2)
Học tốt. Nhớ k cho mik nha.
Lời giải:
P/s: Làm nhưng k biết có đúng hay không!!! (^-^)
Gọi giao điểm mà đồ thị hàm số (y) cắt trục tung là A
Theo bài ra ta có hoành độ của A là 1
Vì A nằm trên trục tung nên hoành độ của A là 0
Do đó điểm A = ( 0 , 1 )
A thuộc đồ thị hàm số (y) nên: ⇒ (m+1)x -2m+1(d)\(\Rightarrow\)m = − 2
~Học tốt!~
a, Bạn tự vẽ nhaaaa
b,c, Bạn kia làm r nên mình làm ý d thôi nha
d,Giả sử M(x';y') là điểm cố định mà đồ thị hàm số đi qua với mọi m
\(\Leftrightarrow\) y' = (m-1)x' -2m+3
\(\Leftrightarrow\) y' + x' -3 = mx' - 2m
\(\Leftrightarrow\) y' +x' -3 = m(x' -2)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x'-2=0\\y'+x'-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x'=2\\y'=1\end{matrix}\right.\)
\(\Rightarrow\) Điểm M(2;1) cố định mà đồ thị hàm số đi qua với mọi m
Vì điểm M(2;1) nên OM= \(\sqrt{1^2+2^2}=\sqrt{5}\left(\text{đ}v\right)\)
Kẻ OH\(\perp\left(d\right)\Rightarrow OH\le OM\Leftrightarrow OH\le\sqrt{5}\)
Dấu "=" \(\Leftrightarrow\) H trùng M \(\Leftrightarrow OM\perp\left(d\right)\)
Do OM là một đường thẳng đi qua gốc toạ độ nên OM: y=ax(a khác 0)
nên 1= 2a nên OM: y =\(\frac{1}{2}x\)
Mà OM vuông (d) nên a.a'=-1 nên (m-1)\(\frac{1}{2}=-1\) \(\Leftrightarrow m=-1\)
Kl: m=-1 để (d) cách gốc toạ độ một khoảng lớn nhất là \(\sqrt{5}\left(\text{đ}v\right)\)
c ) THay tọa độ A ta có
\(5=\left(m-1\right)3-2m+3\Leftrightarrow m-5=0\Leftrightarrow m=5\)
\(a)\) Hàm số \(y=\left(2-3m\right)x+2m-5\)đồng biến
\(\Leftrightarrow2-3m>0\)
\(\Leftrightarrow3m< 2\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy với giá trị \(m< \frac{2}{3}\)thì hàm số trên đồng biến
\(b)\) \(\left(d\right)\)đi qua gốc tọa độ
\(\Leftrightarrow\)Hàm số \(y=\left(2-3m\right)x+2m-5\)có dạng \(y=ax\)
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow2m=5\)
\(\Leftrightarrow m=\frac{5}{2}\)
Vậy \(m=\frac{5}{2}\)
\(c)\) Vì đths đi qua \(A\left(1;1\right)\)
\(\Rightarrow\)Thay \(x=1;y=1\)vào hàm số \(y=\left(2-3m\right)x+2m-5\)
Có: \(\left(2-3m\right).1+2m-5=1\)
\(\Leftrightarrow2-3m+2m-5=1\)
\(\Leftrightarrow-3-m=1\)
\(\Leftrightarrow m=-4\)
Vậy \(m=-4\)
\(d)\) Pt hoành độ giao điểm thỏa mãn:
\(2x-1=x-2\)
\(\Leftrightarrow x=-1\)
\(\Leftrightarrow y=x-2\)
\(\Leftrightarrow y=-3\)
Để \(\left(d\right);y=2x-1;y=x-2\)đồng quy thì:
\(A\left(-1;-3\right)\in d\)
\(\Leftrightarrow\left(2-3m\right)\left(-1\right)+2m-5=-3\)
\(\Leftrightarrow-2+3m+2m-5=-3\)
\(\Leftrightarrow-7+5m=-3\)
\(\Leftrightarrow5m=4\)
\(\Leftrightarrow m=\frac{4}{5}\)
\(e)\) Vì \(\left(d\right)\)cắt trục \(Oy\)tại điểm có tung độ \(=-1\)
\(\Rightarrow\left(0;-1\right)\in\left(d\right)\)
Thay \(x=0;y=-1\)vào hàm số
Có: \(\left(2-3m\right).0+2m-5=-1\)
\(\Leftrightarrow2m-5=-1\)
\(\Leftrightarrow2m=4\)
\(\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) Đths \(y=\left(2-3m\right)x+2m-5\)đi qua gốc tọa độ
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow2m=5\)
\(\Leftrightarrow m=\frac{5}{2}\)
Mà đths \(y=\left(2-3m\right)x+2m-5\)\(\in\)góc phần tư \(\left(II\right),\left(IV\right)\)
\(\Leftrightarrow2-3m< 0\)
\(\Leftrightarrow3m>2\)
\(\Leftrightarrow m>\frac{2}{3}\)
Ta có \(m=\frac{5}{2}\)(tmđk \(m>\frac{2}{3}\))
Vậy \(m=\frac{5}{2}\)
a: (d): (2m-1)x+3(m-1)y=4m-2
Để d//Ox thì 2m-1=0
=>m=1/2
b: Để d//Oy thì m-1=0
=>m=1
c: Thay x=0 và y=0 vào (d), ta được:
4m-2=0
=>m=1/2
a) Để đường thẳng d: (2m-1)x+(m-2)y=m2-3 đi qua gốc tọa độ thì x=y=0
\(\Rightarrow m^2-3=0\Leftrightarrow\left(m-\sqrt{3}\right)\left(m+\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m-\sqrt{3}=0\\m+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{3}\\m=-\sqrt{3}\end{matrix}\right.\)
Vậy khi \(m=\left\{-\sqrt{3};\sqrt{3}\right\}\) thì d đi qua gốc tọa độ.
b) Để đường thẳng d: (2m-1)x+(m-2)y=m2-3 đi qua điểm A thì x=3, y=5.
\(\Rightarrow3\left(2m-1\right)+5\left(m-2\right)=m^2-3\)
\(\Leftrightarrow-m^2+11m-10=0\)
\(\Leftrightarrow m\left(1-m\right)-10\left(1-m\right)=0\)
\(\Leftrightarrow\left(1-m\right)\left(m-10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-m=0\\m-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=10\end{matrix}\right.\)
Vậy khi \(m=\left\{1;10\right\}\) thì d đi qua gốc tọa độ.