K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)

10 tháng 6 2021

a) (d) đi qua \(A\left(1;5\right)\Rightarrow5=2m+2m-3\Rightarrow4m=8\Rightarrow m=2\)

\(\Rightarrow y=4x+1\)

b) pt hoành độ giao điểm \(x^2-2mx-2m+3=0\)

Để (d) tiếp xúc với (P) thì pt có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m\right)^2+8m-12=4m^2+8m-12\)

\(\Rightarrow4m^2+8m-12=0\Rightarrow m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

13 tháng 6 2021

pt hoành độ giao điểm: \(x^2-2mx-2m+3=0\)

Để đường thẳng tiếp xúc với parabol thì pt có 1 nghiệm duy nhất

\(\Rightarrow\Delta'=0\)

\(\Delta'=m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

17 tháng 2 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-m+3=0\)

\(\Delta'=m^2-\left(-m+3\right)=m^2+m-3\)

a, có thiếu đề khum bạn ? 

b, Để (P) tiếp xúc (d) 

\(m^2+m-3=0\Leftrightarrow m=\dfrac{-1\pm\sqrt{13}}{2}\)

-cần chi tiết hơn thì bạn dùng delta nhé 

 

NV
17 tháng 2 2022

Phương trình hoành độ giao điểm: \(x^2=2mx+m-3\Leftrightarrow x^2-2mx-m+3=0\) (1)

a. d cắt (P) \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+m-3>0\Rightarrow\left[{}\begin{matrix}m>\dfrac{-1+\sqrt{13}}{2}\\m< \dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

b. d tiếp xúc (P) khi (1) có nghiệm kép

\(\Leftrightarrow\Delta'=m^2+m-3=0\Rightarrow m=\dfrac{-1\pm\sqrt{13}}{2}\)

Phương trình hoành độ giao điểm là: 

\(-x^2=2mx+3-m\)

\(\Leftrightarrow-x^2-2mx-3+m=0\)

\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)

\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)

Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)

20 tháng 2 2021

Bạn ơi còn tìm toạ độ tiếp điểm nữa mà bạn. Bạn giúp mình được không

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

b: 

1: Thay x=-1 và y=3 vào (d), ta được:

\(2\cdot\left(-1\right)-a+1=3\)

=>-a-1=3

=>-a=4

hay a=-4

a: Thay x=0 và y=9 vào (d), ta được:

\(b+6\cdot0=9\)

hay b=9

Vậy: (d): y=6x+9

b: Phương trình hoành độ giao điểm là:

\(ax^2-6x-9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)

Để (d) tiếp xúc với (P) thì 36a+36=0

hay a=-1

28 tháng 5 2022

`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`

`b)` Với `b=9=>(d):y=6x+9`

Xét ptr hoành độ của `(d)` và `(P)` có:

         `ax^2=6x+9`

`<=>ax^2-6x-9=0`       `(1)`

Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép

    `<=>\Delta' =0`

    `<=>(-3)^2-a.(-9)=0`

    `<=>a=-1` (t/m)

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$

Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:

$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất

Điều này xảy ra khi:

$\Delta=m^2+n=0(2)$

Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$

Nếu $m=1$ thì $n=-1$

Nếu $m=-2$ thì $n=-4$

Vậy............