K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

AB//CD theo Thales có:

\(\frac{OA}{OC}=\frac{OB}{OD}\Leftrightarrow\frac{OA}{OB}=\frac{OC}{OD}=\frac{OA+OC}{OB+OD}=\frac{AC}{BD}\Rightarrow\frac{OC}{AC}=\frac{OD}{BD}\left(1\right)\)

OE//AD nên \(\frac{OC}{AC}=\frac{CE}{CD}\left(2\right)\) và OF//BC nên \(\frac{OD}{BD}=\frac{DF}{DC}\left(3\right)\)

(1),(2) và (3) có: \(\frac{CE}{CD}=\frac{DF}{CD}\Rightarrow CE=DF\Leftrightarrow CF+EF=DE+EF\Leftrightarrow CF=DE\)

Suy ra \(S_{ODE}=S_{OCF}\) ( chung đỉnh nên cùng chiều cao và 2 đáy bằng nhau)

26 tháng 3 2020

Xét ΔOCD có AB//CD (gt), theo đ/lí Ta-lét có: \(\frac{OA}{AC}=\frac{OB}{BD}\left(1\right)\)

Xét ΔADC có OE//AD (gt), theo đ/lí Ta-lét có: \(\frac{OA}{AC}=\frac{DE}{DC}\left(2\right)\)

Xét ΔBCD có OF//BC (gt), theo đ/lí Ta-lét có: \(\frac{OB}{BD}=\frac{CF}{CD}\left(3\right)\)

Từ (1), (2), (3) => \(\frac{DE}{CD}=\frac{CF}{CD}\) => DE = CF

=> SODE = SOCF (2 Δ có chung đường cao hạ từ O, đáy DE = CF)

15 tháng 7 2018

OE // AD => DE / CD = AO/AC (1)

OF // BC => FC / Dc = OB /BD (2)

Vì AB // DC => AO / OC = OB /OD

=> AO/(AO+OC)  = OB/( OD+OB) 

=> AO/AC = OB/ BD (3)

TỪ (1),(2),(3)

=> DE/CD = FC/CD

=> DE = FC (4)

từ o kẻ OH vuông DC 

=> S ode = 1/2*DE*OH 

S OCf = 1/2*FC*OH

Từ (4) => S ODE = S OCf (dpcm )

15 tháng 7 2018

Vì \(OE//AD\)

\(\Rightarrow\frac{DE}{DC}=\frac{OA}{CA}\)(1)

\(OF//BC\)

\(\Rightarrow\frac{CF}{CD}=\frac{BO}{BD}\)(2)

\(AB//CD\)

\(\Rightarrow\frac{AO}{AC}=\frac{BO}{BD}\)(3)

Từ (1) ; (2) và (3)

\(\Rightarrow\frac{DE}{DC}=\frac{CF}{DC}\)

\(\Rightarrow DE=CF\)

Mà trong các tam giác ODE và OCF có 1 cặp cạnh = nhau , có cùng chiều cao hạ từ đỉnh O tới cặp cạnh đó nên 

\(\Rightarrow S_{ODE}=S_{OFC}\)(đpcm)

14 tháng 3 2021

Bạn tự vẽ hình nhé

Xét \(\Delta ACD\) có OE // CD(gt)

=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét \(\Delta BCD\) có OF // CD (gt)

=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)

Mặt khác AB // CD nên  \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF

 

12 tháng 8 2019

Giải bài 20 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

31 tháng 1 2016

Tam giác ABD có OE//AB

=>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1) 
Tam giác ABC có OF//AB

=>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2) 
Tam giác ABO có CD//AB

=>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét) 
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3) 
Từ (1) (2) và (3)

=> OE/AB = OF/AB 
=> OE = OF (đpcm.) 

15 tháng 6 2018

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.

22 tháng 8 2017

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.

21 tháng 4 2020

M làm cái j đấy

21 tháng 4 2020

Hàn Thất haizz

Chủ tịch giả nghèo… và cái kết: 'Đừng coi thường người khác vì vẻ ...

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bài 1:

Áp dụng định lý Talet cho $EO\parallel DC$: 

$\frac{OE}{DC}=\frac{AO}{AC}(1)$

Áp dụng định lý Talet cho $OF\parallel DC$:

$\frac{OF}{DC}=\frac{OB}{BD}(2)$

Áp dụng định lý Talet cho $AB\parallel CD$:

$\frac{OA}{OC}=\frac{OB}{OD}\Leftrightarrow \frac{OA}{OA+OC}=\frac{OB}{OB+OD}\Leftrightarrow \frac{OA}{AC}=\frac{OB}{BD}(3)$

Từ $(1);(2);(3)\Rightarrow \frac{OE}{DC}=\frac{OF}{DC}$

$\Rightarrow OE=OF$ (đpcm)

 

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Hình bài 1:

undefined

18 tháng 10 2023

 Dựng hình bình hành ABPC. Khi đó \(AD=AB+CD=CP+CD=DP\)

 Ta có \(\dfrac{AB}{FE}=\dfrac{DA}{DF}\)\(\dfrac{CD}{FE}=\dfrac{DA}{AF}\)

 \(\Rightarrow\dfrac{AB+CD}{FE}=DA\left(\dfrac{1}{DF}+\dfrac{1}{AF}\right)\)

\(\Rightarrow\dfrac{1}{FE}=\dfrac{DA}{DF.AF}\) \(\Rightarrow\dfrac{DF}{FE}=\dfrac{DP}{FA}\) \(\Rightarrow\dfrac{DF}{DC}=\dfrac{DP}{DA}=1\)

 Từ đó \(\Delta DFC\) cân tại D. \(\Rightarrow\widehat{DFC}=\widehat{DCF}=\widehat{CFE}\) \(\Rightarrow\) FC là tia phân giác của \(\widehat{DFE}\). CMTT, FB là tia phân giác của \(\widehat{AFE}\). Do đó \(\widehat{BFC}=90^o\) (đpcm)