cho tam giác ABC cân tại A có AB=AC = 17cm; BC=16cm.kẻ trung tuyến AM .CMR a, AM vuông góc với BC , b, tính Am
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm của AC nên AM = MC = 8 cm
Cho tam giác ABC cân tại B nên trung tuyến BM đồng thời là đường cao
Xét tg vuông ABM: AB^2 = AM^2 + MB^2
MB^2 = 17^2 - 8^2
MB^2 = 15^2
VẬY MB = 15 cm
_______________________________________________________________
li-ke cho mk nhé bn LinhXinh
Giải:
M B A C
Xét ΔBMA và ΔBMC có:
BA = BC ( do t/g ABC cân tại B )
AM( cạnh chung)
MA = MC ( gt )
⇒ΔBMA=ΔBMC(c−c−c)
⇒\(\widehat{BMA}=\widehat{BMC}\) ( góc t/ứng )
Mà\(\widehat{BMA}+\widehat{BMC}=180^0\) ( kề bù )
⇒\(\widehat{BMA}=\widehat{BMC}=\frac{1}{2}180^0=90^0\)
Ta có: AM=\(\frac{1}{2}\)AC = 8 (cm)
Trong t/g vuông BMA \(\left(\widehat{BMA}=90^0\right)\) (định lí Py-ta-go)
BM2+AM2=AB2
⇒BM2+82=172
⇒BM2=225
⇒BM=\(\sqrt{225}\)=15(cm)
Vậy BM = 15 cm
HOK TỐT
# mui #
Kẻ AH,KC vuông góc với CB,AB
ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=8cm
=>AH=15cm
AH*BC=CK*AB
=>CK*17=15*16=240
=>CK=240/17cm
gọi H là chân đường cao hạ từ A xuống BC
K là chân đường cao hạ từ C xuống AB
ta có AH2=AB2-BH2=172-82=225 => AH=15
SABC=AH.BC/2=CK.AB/2 => CK=AH.BC/AB=15.16/17=240/17
chúc bạn học tốt nha ^^
Giải:
Xét \(\Delta BMA,\Delta BMC\) có:
BA = BC ( do t/g ABC cân tại B )
AM: cạnh chung
MA = MC ( gt )
\(\Rightarrow\Delta BMA=\Delta BMC\left(c-c-c\right)\)
\(\Rightarrow\widehat{BMA}=\widehat{BMC}\) ( góc t/ứng )
Mà \(\widehat{BMA}+\widehat{BMC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{BMA}=\widehat{BMC}=90^o\)
Ta có: \(AM=\frac{1}{2}AC=8\left(cm\right)\)
Trong t/g vuông BMA \(\left(\widehat{BMA}=90^o\right)\), áp dụng định lí Py-ta-go ta có:
\(BM^2+AM^2=AB^2\)
\(\Rightarrow BM^2+8^2=17^2\)
\(\Rightarrow BM^2=225\)
\(\Rightarrow BM=\sqrt{225}=15\left(cm\right)\)
Vậy BM = 15 cm
Thông cảm mik ko bt vẽ hình:
Vì tam giác ABC cân tại B
AM là đường trung tuyến
=> BM đồng thời là đường cao
Vì M là trung điểm BC=> AM=16:2=8cm
Áp dụng định lý Py-ta-go vào tam giác ABM vuông tại M có:
BM^2+AM^2=AB^2
8^2+BM^2=17^2
64+BM^2=289
=> BM^2=289-64=225
=> BM=15cm
A B C
Ta có : \(\hept{\begin{cases}AB+AC=17\\AB-AC=7\end{cases}\Rightarrow}\hept{\begin{cases}AC=5\\AB=12\end{cases}\left(cm\right)}\)
Do \(\Delta ABC\) vuông tại A
\(\Rightarrow AB^2+AC^2=BC^2\) ( định lý Pytago )
\(\Rightarrow12^2+5^2=BC^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13\left(BC>0\right)\)
Vậy : \(BC=13\left(cm\right)\)
Theo bài ta có: \(AB+AC=17cm\); \(AB-AC=7cm\)
\(\Rightarrow\left(AB+AC\right)+\left(AB-AC\right)=17+7\left(cm\right)\)
\(\Leftrightarrow2AB=24\left(cm\right)\)\(\Leftrightarrow AB=12\left(cm\right)\)
\(\Rightarrow AC=17-12=5\left(cm\right)\)
\(\Delta ABC\)vuông tại A \(\Rightarrow\)Áp dụng định lí Pytago ta có:
\(AB^2+AC^2=BC^2\)\(\Rightarrow BC^2=12^2+5^2=169\)\(\Rightarrow BC=13\left(cm\right)\)
Vậy \(BC=13cm\)