Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó: ΔBAE=ΔBIE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó: ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại M
c: Xét ΔBMC có
BA/AM=BI/IC
nên AI//MC
a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó:ΔABE=ΔIBE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó;ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại E
c: Xét ΔBMC có BA/AM=BI/IC
nên AI//MC
a, Xét △ABE vuông tại A và △IBE vuông tại I
Có: EB là cạnh chung
IBE = ABE (gt)
=> △ABE = △IBE (ch-gn)
b, Xét △ICE vuông tại I và △AME vuông tại A
Có: IE = AE (△IBE = △ABE)
IEC = AEM (2 góc đối đỉnh)
=> △ICE = △AME (cgv-gn)
=> CE = ME (2 cạnh tương ứng)
=> △CEM cân tại E
c, Xét △IBA có: AB = IB (△ABE = △IBE) => △IBA cân tại B => BIA = (180o - IBA) : 2 (1)
Ta có: BC = IB + IC và BM = AB + AM
Mà IB = AB (cmt) ; IC = AM (△ICE = △AME)
=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2 (2)
Từ (1), (2) => BIA = BCM
Mà 2 góc này nằm ở vị trí đồng vị
=> AI // MC (dhnb)
`Answer:`
a. Xét `\triangleABE` và `triangleBEI:`
`BE` chung
`\hat{ABE}=\hat{EBI}`
`\hat{BAE}=\hat{EIB}=90^o`
`=>\triangleABE=\triangleIBE(ch-gn)`
`=>AE=IE`
b. Ta có: `A,I,C,M` cùng thuộc đường tròn trên đường kính `MC`
Mà `\hat{AMC}=\hat{MIC}=90^o`
`=>\hat{AMI}=\hat{ACI}`
Xét `\triangleBME` và `\triangleBCE:`
`BE` chung
`\hat{AMI}=\hat{ACI}`
`\hat{MBE}=\hat{CBE}`
`=>\triangleBME=\triangleBCE(g.c.g)`
`=>EM=EC`
`=>\triangleEMC` cân ở `E`
c. Ta có: `A,I,C,M` thuộc đường tròn đường kính `MC`
`=>\hat{AIM}=\hat{ACM}`
Mà theo phần b. `\hat{EMC}` cân nên `\hat{IMC}=\hat{ACM}`
`=>\hat{AIM}=\hat{IMC}` (So le trong)
`\(\Rightarrow AI//MC\)
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a: Xét ΔAMB và ΔAMC có
AM chung
\(\widehat{BAM}=\widehat{CAM}\)
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M
c: ta có: ΔAEM=ΔAFM
=>AE=AF
=>A nằm trên đường trung trực của EF(1)
ta có: ME=MF
=>M nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra AM là đường trung trực của EF
=>AM\(\perp\)EF
d: Kẻ FH\(\perp\)BC
Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEIB vuông tại I và ΔFHC vuông tại H có
EB=FC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEIB=ΔFHC
=>EI=FH và BI=CH
Ta có: BI+IM=BM
CH+HM=CM
mà BI=CH và BM=CM
nên IM=HM
=>M là trung điểm của IH
Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM\(\perp\)BC
=>AM//KI//FH
Xét hình thang FHIK có
M là trung điểm của HI
MA//KI//FH
Do đó: A là trung điểm của KF