Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó: ΔBAE=ΔBIE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó: ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại M
c: Xét ΔBMC có
BA/AM=BI/IC
nên AI//MC
a, Xét △ABE vuông tại A và △IBE vuông tại I
Có: EB là cạnh chung
IBE = ABE (gt)
=> △ABE = △IBE (ch-gn)
b, Xét △ICE vuông tại I và △AME vuông tại A
Có: IE = AE (△IBE = △ABE)
IEC = AEM (2 góc đối đỉnh)
=> △ICE = △AME (cgv-gn)
=> CE = ME (2 cạnh tương ứng)
=> △CEM cân tại E
c, Xét △IBA có: AB = IB (△ABE = △IBE) => △IBA cân tại B => BIA = (180o - IBA) : 2 (1)
Ta có: BC = IB + IC và BM = AB + AM
Mà IB = AB (cmt) ; IC = AM (△ICE = △AME)
=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2 (2)
Từ (1), (2) => BIA = BCM
Mà 2 góc này nằm ở vị trí đồng vị
=> AI // MC (dhnb)
`Answer:`
a. Xét `\triangleABE` và `triangleBEI:`
`BE` chung
`\hat{ABE}=\hat{EBI}`
`\hat{BAE}=\hat{EIB}=90^o`
`=>\triangleABE=\triangleIBE(ch-gn)`
`=>AE=IE`
b. Ta có: `A,I,C,M` cùng thuộc đường tròn trên đường kính `MC`
Mà `\hat{AMC}=\hat{MIC}=90^o`
`=>\hat{AMI}=\hat{ACI}`
Xét `\triangleBME` và `\triangleBCE:`
`BE` chung
`\hat{AMI}=\hat{ACI}`
`\hat{MBE}=\hat{CBE}`
`=>\triangleBME=\triangleBCE(g.c.g)`
`=>EM=EC`
`=>\triangleEMC` cân ở `E`
c. Ta có: `A,I,C,M` thuộc đường tròn đường kính `MC`
`=>\hat{AIM}=\hat{ACM}`
Mà theo phần b. `\hat{EMC}` cân nên `\hat{IMC}=\hat{ACM}`
`=>\hat{AIM}=\hat{IMC}` (So le trong)
`\(\Rightarrow AI//MC\)
a, Xét △ABE vuông tại A và △IBE vuông tại I
Có: EB là cạnh chung
IBE = ABE (gt)
=> △ABE = △IBE (ch-gn)
b, Xét △ICE vuông tại I và △AME vuông tại A
Có: IE = AE (△IBE = △ABE)
IEC = AEM (2 góc đối đỉnh)
=> △ICE = △AME (cgv-gn)
=> CE = ME (2 cạnh tương ứng)
=> △CEM cân tại E
c, Xét △IBA có: AB = IB (△ABE = △IBE) => △IBA cân tại B => BIA = (180o - IBA) : 2 (1)
Ta có: BC = IB + IC và BM = AB + AM
Mà IB = AB (cmt) ; IC = AM (△ICE = △AME)
=> BC = BM => △CBM cân tại B => BCM = (180o - CBM) : 2 (2)
Từ (1), (2) => BIA = BCM
Mà 2 góc này nằm ở vị trí đồng vị
=> AI // MC (dhnb)
Bạn tự vẽ hình nha.
a,Xét tg ABE và tg HBE:
^BAE=^BHE=90*
^ABE=^HBE(BE là pg)
BE chung
=>tg ABE= tg HBE(ch-gn)
b,+,tg ABC có:^BAC=90*,^ABC=60*
=>^C=30*
+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)
=>^HEB=60*
Mà HK // BE
=>^HBE=^EHK=60*(slt)
+, tg CHE có:^EHC=90*,^C=30*
=>HEC=60*
+,tg HEK có:
^EHK=60*,^HEC(^HEK)=60*
=>TG HEK đều(dhnb)
Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.
c, +,CM:tg AEM=tg HEC(cgv-gnk)
=>AM=HC
+,CM:BM=BC
+,CM:tg BMI=tgBCI(cgc)
=>NM=NC
Xong r nha. Chúc bạn học tốt.
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`
a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó:ΔABE=ΔIBE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó;ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại E
c: Xét ΔBMC có BA/AM=BI/IC
nên AI//MC
chúc mừng cj lên đc đại tướng