K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A và ΔMNP vuông tại M có

AB=MN

BC=NP

Do đo: ΔABC=ΔMNP

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Vì \(\Delta ABC \backsim \Delta MNP\) nên:

\(\begin{array}{l} \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\\ \Rightarrow \frac{4}{5} = \frac{6}{{NP}} = \frac{5}{{PM}}\\ \Rightarrow NP = \frac{{15}}{2};\,\,PM = \frac{{25}}{4}\end{array}\)

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
24 tháng 1 2019

đáp án

xét tam giác ABC và tam giác MNP có

góc M=góc A

MN=AP

BC=NP

nên tam giác ABC=tam giác MNP

21 tháng 3 2022

B

21 tháng 3 2022

B

29 tháng 7 2018

Vì \(\Delta ABC=\Delta MNP\)( Giả thiết )

   \(\Rightarrow AB=MN=3cm\)

        \(AC=MP=4cm\)'

        \(BC=NP=6cm\)

Vậy MN = 3 cm

      MP = 4 cm

      NP = 6 cm

29 tháng 7 2018

vẽ hình luôn hộ mik

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vì \(\Delta{MNP}=\Delta{DEF}\) 

\( \Rightarrow DE = MN;EF = NP;DF = MP\) (các cạnh tương ứng)

\( \Rightarrow NP = 6cm\)

\( \Rightarrow \) Chu vi tam giác MNP là:

C = MN + MP + NP = 4 + 5 + 6 = 15 (cm)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

a) Tam giác ABC tại A nên \(\widehat B = \widehat C\) (1)

Vì \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (2)

Từ (1) và (2) nên \(\widehat N = \widehat P\) suy ra tam giác MNP cân tại M.

b) Vì tam giác ABC là tam giác đều nên \(\widehat A = \widehat B = \widehat C = {60^o}\)(3)

Vì \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (4)

Từ (3) và (4) suy ra \(\widehat M = \widehat N = \widehat P = {60^o}\) nên tam giác MNP là tam giác đều.

c) Vì tam giác ABC có  \(AB \ge AC \ge BC\) suy ra \(\widehat C \ge \widehat B \ge \widehat A\) (quan hệ giữa góc và cạnh đối điện) (5)

Mà \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (6)

Từ (5) và (6) suy ra \(\widehat P \ge \widehat N \ge \widehat M\) nên \(MN \ge MP \ge NP\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Khẳng định d) là khẳng định không đúng 

=> ΔACB \(\backsim\) ΔMPN