Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo như đề bài ta đã có các góc N và P. Vậy ta cần tính góc M
(-) Như ta biết tổng ba góc của một tam giác bằng 180o
=> N + P + M = 180o
60o + 80o + M = 180o
140 o + M = 180o
M = 180o - 140o
M = 40o
Vì tam giác ABC = tam giác MNP nên góc A = M; B = N; C = P
=> A = 40o; B = 60o; C = 80o
Xin lỗi bạn mik không biết ghi góc như bạn nên mong bạn thông cảm
Học tốt!!!
Ta có:\(\widehat{M}\)+\(\widehat{N}\)+\(\widehat{P}\)=180 độ
Mà \(\widehat{N}\)=60 độ;\(\widehat{P}\)=80 độ suy ra \(\widehat{M}\)=40 độ
Vì\(\Delta ABC=\Delta MNP\)suy ra \(\widehat{A}=\widehat{M}\);\(\widehat{B}=\widehat{N}\);\(\widehat{C}=\widehat{P}\)
\(\Rightarrow\)\(\widehat{A}=40\)độ ;\(\widehat{B}=60\)độ ;\(\widehat{C}=80\)độ
Bài 1:
ΔABC=ΔDEF
nên \(\widehat{A}=\widehat{D}=90^0;\widehat{B}=\widehat{E};\widehat{C}=\widehat{F}\)
mà \(\widehat{B}-\widehat{C}=20^0\)
nên \(\widehat{E}-\widehat{F}=20^0\)
mà \(\widehat{E}+\widehat{F}=90^0\)
nên \(\widehat{E}=\dfrac{1}{2}\left(20^0+90^0\right)=55^0\)
=>\(\widehat{F}=35^0\)
B C A I M
a) Xét \(\Delta AIB\)và \(\Delta MIC\)có:
\(BI=CI\)(I là trung điểm của BC)
\(\widehat{AIB}=\widehat{MIC}\)(2 góc đối đỉnh)
\(AI=MI\left(gt\right)\)
Do đó: \(\Delta AIB=\Delta MIC\left(c.g.c\right)\)
b) Xét \(\Delta AIC\)và \(\Delta MIB\)có:
\(BI=CI\)(I là trung điểm của BC)
\(\widehat{AIC}=\widehat{MIB}\)(2 góc đối đỉnh)
\(AI=MI\left(gt\right)\)
Do đó: \(\Delta AIC=\Delta MIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{IAC}=\widehat{IMB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AC // BM (đpcm)
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
đáp án
có
xét tam giác ABC và tam giác MNP có
góc M=góc A
MN=AP
BC=NP
nên tam giác ABC=tam giác MNP