Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
a )
Vì ΔABDΔABD là tam giác đều(gt) ⇒DABˆ⇒DAB^=600
ΔACEΔACE là tam giác đều(gt) ⇒EACˆ⇒EAC^=600
⇒DABˆ+BACˆ=EACˆ+BACˆ⇒DAB^+BAC^=EAC^+BAC^
⇒DACˆ=BAEˆ⇒DAC^=BAE^
Xét ΔDACΔDAC và ΔBAEΔBAE có:
DA=BA(vì ΔABDΔABD là tam giác đều)
DACˆ=BAEˆDAC^=BAE^ (cmt)
AC=AE(vì ΔACEΔACE là tam giác đều)
⇒ΔDAC=ΔBAE(c.g.c)
b, Ta có: ^ AEM + ^MEC = 60 độ
mà ^AEM = ACD (Tam giác ABE = tam giác ADC)
=>^MEC + ^MCA = 60 độ
Ta lại có: ^ACE = 60 độ
=>^MCA + ^ACE+ ^MEC = 120 độ
mà ^MCA + ^ACE = ^MCE
=> ^MCE + ^MEC = 120 độ
Ta lại có: ^EMC + ^MCE + ^CEM = 180 độ
mà ^MCE + ^CEM =120 độ (cm trên)
=>^EMC + 120 độ =180 độ
=> ^EMC = 180 độ - 120 độ =60 độ
Ta lại có: ^BMC + ^EMC = 180 độ
mà ^EMC = 60 độ
=> ^BMC + 60 độ =180 độ
=> ^BMC = 180 độ - 60 độ = 120 độ (đpcm)
A B C D E M 1 2 3 F
Ta có : \(\Delta ABD\) đều
\(\Rightarrow\widehat{A_2}=60^o\)
\(\Delta ACE\) đều
\(\Rightarrow\widehat{A_3}=60^o\)
\(\Rightarrow\widehat{A_2}=\widehat{A_3}\)
Ta lại có : \(\widehat{A_1}+\widehat{A_2}=\widehat{DAC}\)
\(\widehat{A_1}+\widehat{A_3}=\widehat{BAE}\)
Mặt khác \(\widehat{A_1}chung\)
\(\widehat{A_2}=\widehat{A_3}\) (cmt)
Do đó : \(\widehat{BAE}=\widehat{DAC}\)
Xét \(\Delta ABE\) và \(\Delta ADC\) có:
\(AB=AD\) ( \(\Delta ABD\) đều)
\(\widehat{BAE}=\widehat{DAC}\)
\(AE=AC\)(\(\Delta ACE\) đều)
Do đó : \(\Delta ABE=\Delta ADC\)
\(\Rightarrow\widehat{AEB}=\widehat{ACD}\) ( hai góc tương ứng )
b) Gọi giao điểm của AC và BE là F
Trong \(\Delta AFE\) có :
\(\widehat{A_3}+\widehat{AFE}+\widehat{E}=180^o\) ( định lí )
Trong \(\Delta MFC\) có :
\(\widehat{MFC}+\widehat{FMC}+\widehat{FCM}=180^o\) ( định lí )
Mặt khác
\(\widehat{E}=\widehat{FCM}\)( theo câu a )
\(\widehat{MFC=}\widehat{AFE}\) ( hai góc đối đỉnh )
\(\Rightarrow\widehat{FMC}=\widehat{A_3}\)
Mà \(\widehat{A_3}=60^o\)(\(\Delta ACE\)đều )
\(\Rightarrow\)\(\widehat{FMC}=60^o\)
Ta lại có : \(\widehat{FMC}+\widehat{BMC}=180^o\)( hai góc kề bù )
hay \(60^o+\widehat{BMC}=180^o\)
\(\Rightarrow\widehat{BMC}=180^o-60^o=120^o\)(đpcm)
a, Ta có: vì tam giác ABD là tam giác đều
=> góc DAB = 60 độ
vì tam giác ACE là tam giác đều
=>góc CAE = 60 độ
Lại có: 60 độ + góc CAB = 60 độ + góc CAB
<=>góc DAB+ góc CAB = góc CAE + góc CAB
=> góc DAC = góc BAE
Xét tam giác ABE và tam giác ADC có:
AB = AD (gt)
góc BAE = góc DAC (chứng minh trên)
AE=AC (gt)
=> tam giác ABE = tam giác ADC
b) Gọi giao điểm của AB và CD là I
Vì tam giác ABE = tam giác ADC
=> góc ABE = góc ADC hay góc IBM = góc ADI
Mà góc BIM = góc AID (đối đỉnh)
=>góc DAI = góc IMB
=> góc IMB = 60 độ
Mà góc BMC = góc DMC - góc DMB
góc BMC = 180 độ - 60 độ
=> góc BMC = 120 độ
A B C D E M I
giúp mình vs các bạn ơi